scholarly journals Topological Loops with Decomposable Solvable Multiplication Groups

2021 ◽  
Vol 77 (1) ◽  
Author(s):  
Ameer Al-Abayechi ◽  
Ágota Figula

AbstractIn this paper we deal with the class $$\mathcal {C}$$ C of decomposable solvable Lie groups having dimension six. We determine those Lie groups in $$\mathcal {C}$$ C and their subgroups which are the multiplication groups Mult(L) and the inner mapping groups Inn(L) for three-dimensional connected simply connected topological loops L. This result completes the classification of the at most 6-dimensional solvable multiplication Lie groups of the loops L. Moreover, we obtain that every at most 3-dimensional connected topological proper loop having a solvable Lie group of dimension at most six as its multiplication group is centrally nilpotent of class two.


Author(s):  
Á. FIGULA ◽  
A. AL-ABAYECHI

Abstract We prove that the solvability of the multiplication group Mult(L) of a connected simply connected topological loop L of dimension three forces that L is classically solvable. Moreover, L is congruence solvable if and only if either L has a non-discrete centre or L is an abelian extension of a normal subgroup ℝ by the 2-dimensional nonabelian Lie group or by an elementary filiform loop. We determine the structure of indecomposable solvable Lie groups which are multiplication groups of three-dimensional topological loops. We find that among the six-dimensional indecomposable solvable Lie groups having a four-dimensional nilradical there are two one-parameter families and a single Lie group which consist of the multiplication groups of the loops L. We prove that the corresponding loops are centrally nilpotent of class 2.



2017 ◽  
Vol 28 (06) ◽  
pp. 1750048 ◽  
Author(s):  
Takahiro Hashinaga ◽  
Hiroshi Tamaru

In this paper, we define the corresponding submanifolds to left-invariant Riemannian metrics on Lie groups, and study the following question: does a distinguished left-invariant Riemannian metric on a Lie group correspond to a distinguished submanifold? As a result, we prove that the solvsolitons on three-dimensional simply-connected solvable Lie groups are completely characterized by the minimality of the corresponding submanifolds.



Author(s):  
A. L. Carey ◽  
W. Moran

AbstractLet G be a second countable locally compact group possessing a normal subgroup N with G/N abelian. We prove that if G/N is discrete then G has T1 primitive ideal space if and only if the G-quasiorbits in Prim N are closed. This condition on G-quasiorbits arose in Pukanzky's work on connected and simply connected solvable Lie groups where it is equivalent to the condition of Auslander and Moore that G be type R on N (-nilradical). Using an abstract version of Pukanzky's arguments due to Green and Pedersen we establish that if G is a connected and simply connected Lie group then Prim G is T1 whenever G-quasiorbits in [G, G] are closed.



2016 ◽  
Vol 08 (02) ◽  
pp. 273-285 ◽  
Author(s):  
Hisashi Kasuya

For a lattice [Formula: see text] of a simply connected solvable Lie group [Formula: see text], we describe the analytic germ in the variety of representations of [Formula: see text] at the trivial representation as an analytic germ which is linearly embedded in the analytic germ associated with the nilpotent Lie algebra determined by [Formula: see text]. By this description, under certain assumption, we study the singularity of the analytic germ in the variety of representations of [Formula: see text] at the trivial representation by using the Kuranishi space construction. By a similar technique, we also study deformations of holomorphic structures of trivial vector bundles over complex parallelizable solvmanifolds.



2017 ◽  
Vol 17 (3) ◽  
Author(s):  
Giovanni Calvaruso ◽  
Antonella Perrone

AbstractWe study left-invariant almost paracontact metric structures on arbitrary three-dimensional Lorentzian Lie groups. We obtain a complete classification and description under a natural assumption, which includes relevant classes as normal and almost para-cosymplectic structures, and we investigate geometric properties of these structures.



Author(s):  
Jorge Lauret ◽  
Cynthia E Will

Abstract We study the natural functional $F=\frac {\operatorname {scal}^2}{|\operatorname {Ric}|^2}$ on the space of all non-flat left-invariant metrics on all solvable Lie groups of a given dimension $n$. As an application of properties of the beta operator, we obtain that solvsolitons are the only global maxima of $F$ restricted to the set of all left-invariant metrics on a given unimodular solvable Lie group, and beyond the unimodular case, we obtain the same result for almost-abelian Lie groups. Many other aspects of the behavior of $F$ are clarified.



2018 ◽  
Vol 18 (4) ◽  
pp. 395-404 ◽  
Author(s):  
Silvio Reggiani

Abstract We determine the index of symmetry of 3-dimensional unimodular Lie groups with a left-invariant metric. In particular, we prove that every 3-dimensional unimodular Lie group admits a left-invariant metric with positive index of symmetry. We also study the geometry of the quotients by the so-called foliation of symmetry, and we explain in what cases the group fibers over a 2-dimensional space of constant curvature.



2017 ◽  
Vol 15 (01) ◽  
pp. 1850015
Author(s):  
Farhad Asgari ◽  
Hamid Reza Salimi Moghaddam

Let [Formula: see text] be a Lie group equipped with a left invariant Randers metric of Berward type [Formula: see text], with underlying left invariant Riemannian metric [Formula: see text]. Suppose that [Formula: see text] and [Formula: see text] are lifted Randers and Riemannian metrics arising from [Formula: see text] and [Formula: see text] on the tangent Lie group [Formula: see text] by vertical and complete lifts. In this paper, we study the relations between the flag curvature of the Randers manifold [Formula: see text] and the sectional curvature of the Riemannian manifold [Formula: see text] when [Formula: see text] is of Berwald type. Then we give all simply connected three-dimensional Lie groups such that their tangent bundles admit Randers metrics of Berwarld type and their geodesics vectors.



2020 ◽  
pp. 14-14
Author(s):  
Tijana Sukilovic

In this paper the complete classification of left invariant metrics of arbitrary signature on solvable Lie groups is given. By identifying the Lie algebra with the algebra of left invariant vector fields on the corresponding Lie group ??, the inner product ??,?? on g = Lie G extends uniquely to a left invariant metric ?? on the Lie group. Therefore, the classification problem is reduced to the problem of classification of pairs (g, ??,??) known as the metric Lie algebras. Although two metric algebras may be isometric even if the corresponding Lie algebras are non-isomorphic, this paper will show that in the 4-dimensional solvable case isometric means isomorphic. Finally, the curvature properties of the obtained metric algebras are considered and, as a corollary, the classification of flat, locally symmetric, Ricciflat, Ricci-parallel and Einstein metrics is also given.



2015 ◽  
Vol 6 (4) ◽  
Author(s):  
Detlev Poguntke

AbstractIt was one of great successes of Kirillov's orbit method to see that the unitary dual of an exponential Lie group is in bijective correspondence with the orbit space associated with the linear dual of the Lie algebra of the group in question. To show that this correspondence is an homeomorphism turned out to be unexpectedly difficult. Only in 1994 H. Leptin and J. Ludwig gave a proof using the notion of variable groups. In this article their proof in the case of completely solvable Lie group is reorganized, some “philosophy” and some new arguments are added. The purpose is to contribute to a better understanding of this proof.



Sign in / Sign up

Export Citation Format

Share Document