microbial plfas
Recently Published Documents


TOTAL DOCUMENTS

8
(FIVE YEARS 2)

H-INDEX

5
(FIVE YEARS 1)

2020 ◽  
Vol 452 (1-2) ◽  
pp. 119-135 ◽  
Author(s):  
Hong Shen ◽  
Wenhui Yan ◽  
Xingyong Yang ◽  
Xinhua He ◽  
Xin Wang ◽  
...  

Forests ◽  
2018 ◽  
Vol 9 (11) ◽  
pp. 680 ◽  
Author(s):  
Xuan Yu ◽  
Lin Yang ◽  
Shixuan Fei ◽  
Zitong Ma ◽  
Ruqian Hao ◽  
...  

Gaps by thinning can have different microclimatic environments compared to surrounding areas, depending on the size of the gap. In addition, gaps can play important roles in biological dynamics, nutrient cycling, and seedling regeneration. The impacts of gap size on soil microbial communities and enzyme activities in different soil layers in Chinese pine plantations are not well understood. Here, we created gaps of 45 m2 (small, G1), 100 m2 (medium, G2), and 190 m2 (large, G3) by thinning unhealthy trees in an aged (i.e., 50 years old) monoculture Chinese pine plantation in 2010. Soil samples were collected in 2015. The total, bacterial, Gram-positive (G+), and Gram-negative (G−) phospholipid fatty acid (PLFA) profiles were highest in medium gaps in both the organic and mineral layers. These indicesdecreased sharply as gap size increased to 190 m2, and each of the detected enzyme activities demonstrated the same trend. Under all the gap size managements, abundances of microbial PLFAs and enzyme activities in the organic layers were higher than in the mineral layers. The soil layer was found to have a stronger influence on soil microbial communities than gap size. Redundancy analysis (RDA) based on the three systems with different gap sizes showed that undergrowth coverage, diversity, soil total nitrogen (TN), total organic carbon (TOC), and available phosphorus (AT) significantly affected soil microbial communities. Our findings highlighted that the effect of gap size on soil microenvironment is valuable information for assessing soil fertility. Medium gaps (i.e., 100 m2) have higher microbial PLFAs, enzyme activity, and soil nutrient availability. These medium gaps are considered favorable for soil microbial communities and fertility studied in a Chinese pine plantation managed on the Loess Plateau.


2018 ◽  
Vol 15 (4) ◽  
pp. 1217-1228 ◽  
Author(s):  
Zhiwei Xu ◽  
Guirui Yu ◽  
Xinyu Zhang ◽  
Nianpeng He ◽  
Qiufeng Wang ◽  
...  

Abstract. Soil microorganisms play an important role in regulating nutrient cycling in terrestrial ecosystems. Most of the studies conducted thus far have been confined to a single forest biome or have focused on one or two controlling factors, and few have dealt with the integrated effects of climate, vegetation, and soil substrate availability on soil microbial communities and functions among different forests. In this study, we used phospholipid-derived fatty acid (PLFA) analysis to investigate soil microbial community structure and extracellular enzymatic activities to evaluate the functional potential of soil microbes of different types of forests in three different climatic zones along the north–south transect in eastern China (NSTEC). Both climate and forest type had significant effects on soil enzyme activities and microbial communities with considerable interactive effects. Except for soil acid phosphatase (AP), the other three enzyme activities were much higher in the warm temperate zone than in the temperate and the subtropical climate zones. The soil total PLFAs and bacteria were much higher in the temperate zone than in the warm temperate and the subtropical zones. The soil β-glucosidase (BG) and N-acetylglucosaminidase (NAG) activities were highest in the coniferous forest. Except for the soil fungi and fungi–bacteria (F/B), the different groups of microbial PLFAs were much higher in the conifer broad-leaved mixed forests than in the coniferous forests and the broad-leaved forests. In general, soil enzyme activities and microbial PLFAs were higher in primary forests than in secondary forests in temperate and warm temperate regions. In the subtropical region, soil enzyme activities were lower in the primary forests than in the secondary forests and microbial PLFAs did not differ significantly between primary and secondary forests. Different compositions of the tree species may cause variations in soil microbial communities and enzyme activities. Our results showed that the main controls on soil microbes and functions vary in different climatic zones and that the effects of soil moisture content, soil temperature, clay content, and the soil N ∕ P ratio were considerable. This information will add value to the modeling of microbial processes and will contribute to carbon cycling in large-scale carbon models.


2017 ◽  
Author(s):  
Zhiwei Xu ◽  
Guirui Yu ◽  
Xinyu Zhang ◽  
Nianpeng He ◽  
Qiufeng Wang ◽  
...  

Abstract. Soil microorganisms play an important role in regulating nutrient cycling in terrestrial ecosystems. Most of the studies conducted thus far have been confined to a single forest biome or have focused on one or two controlling factors, and few have dealt with the integrated effects of climate, vegetation, and soil substrate availability on soil microbial communities and functions among different forests. In this study, we used phospholipid-derived fatty acid (PLFA) analysis to investigate soil microbial community structure, and extracellular enzymatic activities to evaluate the functional potential of soil microbes of different types of forests in three different climatic zones along the North-South transect in eastern China (NSTEC). In general, soil enzyme activities and microbial PLFAs were higher in primary forests than in secondary forests in temperate and warm temperate regions. In the subtropical region, soil enzyme activities were lower in the primary forests than in the secondary forests and microbial PLFAs did not differ significantly between primary and secondary forests. The microbial PLFAs and enzyme activities differed considerably between broadleaved and coniferous forests. Different species of coniferous trees may cause variations in soil microbial PLFAs and enzyme activities. Both climate and forest type had significant effects on soil enzyme activities and microbial communities with a considerable interactive effect. Litter nutrients made an important contribution to variations in the soil microbial communities and enzyme activities in temperate zones, while soil micro-climate and nutrients were the main controls on the soil microbial community structure and enzymatic activities in warm temperate and subtropical zones. Our results indicate that the main controls on soil microbes and functions vary across forest ecosystems in different climatic zones, and that the effects of soil moisture content, soil temperature, and the soil N/P ratio were considerable. This information will add value to modeling of microbial processes and will contribute to carbon cycling in large-scale carbon models.


Soil Research ◽  
2015 ◽  
Vol 53 (7) ◽  
pp. 763 ◽  
Author(s):  
Ming Li ◽  
Ming Liu ◽  
Stephen Joseph ◽  
Chun-Yu Jiang ◽  
Meng Wu ◽  
...  

Biochar has been considered to affect the transformation of soil organic carbon, soil microbial activity and diversity when applied to soil. However, the changes in chemical and biological properties of biochar itself in soil have not been fully determined. In this study, various biochar samples were obtained from three crop straws (rice, peanut and corn) and two wood chips (bamboo and pine), and incubated with an acidic paddy soil. We examined the changes of biochar water extractable organic carbon (WEOC) content and its ultraviolet (UV) absorbance at 280 nm during incubation period, and also investigated the microbial phospholipid fatty acids (PLFAs) profile of biochar after 75 days of incubation. The WEOC content of biochars decreased at the end of incubation, except for the biochar pyrolysed from bamboo chips at 400°C. An average reduction rate of 61.2% in WEOC concentration for straw biochars occurred within the first 15 days, while no significant change was observed for all biochars between day 15 and 45, and a slight increase in WEOC occurred for all biochars in the last 30 days. There was a positive relationship between biochar WEOC content and its UV absorbance properties. The microbial PLFAs concentrations of biochars varied from 15.56 to 60.35 nmol g–1, and there was a greater abundance in content and species for corn straw biochars than for the other types of biochars. General bacteria were the dominant microbial group that colonised biochar sample, while gram-positive bacterial and fungi were less in abundance. The chemical properties of fresh biochar were well correlated with total PLFAs concentrations, and significantly related to the composition of microbial community. We concluded that the WEOC component of most biochars change within such short-term application to soil, and the WEOC in combined with the pH and nutrient status of biochar, can alter the type and abundance of microorganisms that colonised biochar.


2013 ◽  
Vol 106 ◽  
pp. 391-403 ◽  
Author(s):  
Anne-Gret Seifert ◽  
Susan Trumbore ◽  
Xiaomei Xu ◽  
Dachung Zhang ◽  
Gerd Gleixner

Sign in / Sign up

Export Citation Format

Share Document