gap size
Recently Published Documents


TOTAL DOCUMENTS

571
(FIVE YEARS 114)

H-INDEX

47
(FIVE YEARS 5)

Author(s):  
S. A. Chizhik ◽  
O. M. Volchek ◽  
V. Y. Prushak

Carried out simulation of oscillations of a spring-loaded roll in a roll compactor when interacting the powder being compacted with the rolls. Considering the separation of the feed and compaction areas in the contact area of the roll with the material being compacted, we obtain the dependence of the force acting on the roll on the gap size between the rolls. It is shown that this dependence is non-linear, and it can be described with a sufficiently high accuracy degree by an exponential function with a negative exponent in the working range. The given numerical solution of the equation of free nonlinear oscillations of the spring-loaded roll has shown that considering the deformation of the material being compacted leads to a reduction of the natural frequency of the system by 20–25 % compared to the case, where the pressure force of the powder on the roll is assumed to be independent of the gap size. The nonlinearity of the dependence of the pressure force on the gap also leads to the increase by 10 % in the calculated values of the maximum displacements. The developed approach to the calculation of oscillations of the spring-loaded roll in the roll compactor enables to take into account the peculiarities of deformation of the powder being compacted during its interaction with the rolls. In addition, it allows estimating the frequencies and oscillation amplitudes and setting the optimum range of spring rate values, at which the occurrence of resonance in the machine is not possible.


2021 ◽  
pp. 1-9
Author(s):  
James Shaffer ◽  
Omid Askari ◽  
Saeid Zare

Abstract Previous methods of achieving ignition in the Plasma, Combustion and Fluid imaging (PCFi) Laboratory's Constant Volume Combustion Chamber (CVCC) utilizes either a standard or modified spark plug. The standard spark plug achieves a representation of side wall ignition (similar to a combustion engine) while modified spark plug has an extended electrode to allow for a center camber ignition used for laminar burning speed (LBS) measurements. The creation of the modified spark plug required welding a stainless-steel wire to the electrode of the plug. The creation of these electrodes is time consuming and requires a large quantity to effectively test a wide range of parameters such as gap size or electrode geometry. Two custom-design electrodes are presented in this paper which extend the experimental range of the PCFi's CVCC system. Electrode Design A, gives the ability to test thin wire electrode with adjustability of gap size and different diameters through use of a compression fitting. This electrode design (i.e., tip-to-tip) is utilized with a traditional style of automotive ignition system (i.e., capacitive discharge) to study ignition process (i.e., thermal plasma) and spherical flame propagation. Electrode Design B, adds the ability to change tip geometry (i.e., plate-to-plate, tip-to-plate, tip-to-sphere, plate-to-sphere, etc). In this paper the plate-to-plate configuration is demonstrated to study uniform low-temperature nanosecond plasma discharge. Both electrode designs reduce structural weakness by removing the welded joint and allow for linear gap size adjustment. The electrode utilizes high-temperature epoxy, ceramic and grafoil seals to make parameter adjustments easy and precise. The design was analyzed, prior to building and testing, based on the stress induced from the sealant, the total rated voltage, the rated temperature and the fracture stress of the ceramic material. The stress induced in the electrodes was analyzed with Finite Element Analysis (FEA) and the results were found to be within the limits of the material in terms of the compressive and fracture strengths. The maximum voltage was found to be around 30 kV. Design A is presented with 3 different electrode diameters of 1.3, 1 and 0.5 mm and Design B which utilizes a threaded connection for adjustable tip geometry. A sample of data, visual and electrical, is presented for the newly created electrode with a 0.5 mm diameter as well as combustion images for up to 10 atm of initial pressure for methane-air mixture. The new electrode design was able to survive several months of experimental use with few issues compared with the previous welded design.


2021 ◽  
Vol 11 (23) ◽  
pp. 11295
Author(s):  
Shungen Xiao ◽  
Qingfeng Xiao ◽  
Mengmeng Song ◽  
Zexiong Zhang

In order to explore the failure mechanism of a reciprocating compressor system with clearance fault, we implemented a computational framework whereby a simulation model of the mechanism is established using ADAMS software in this paper, and a typical reciprocating compressor model is introduced to validate the design model. In this work, the joint clearance faults between the crankshaft and linkage, between the linkage and crosshead, and in both locations are taken into account computationally. These faults are one of the major causes of vibration. Through dynamic calculation and analysis of a system with clearance fault, the simulated results show that these clearance faults directly influence the vibration. The larger the gap size, the more severe the vibration and the higher the amplitude of the vibration. Furthermore, the clearance number also affects the vibration greatly.


2021 ◽  
Vol 32 (1) ◽  
pp. 015001
Author(s):  
Yuecen Zhao ◽  
Wenzhong Lou ◽  
Hengzhen Feng ◽  
Bo He

Abstract In order to realize that the fuze micro system has both high security and miniaturization characteristics, the spark gap research of Micro-Electro-Mechanical System safety system is carried out. So that to solve the safe and reliable function of the spark gap switch under the low power supply voltage (35 V) of the fuze micro system, the gas gap size and electrode radius are shown to significantly affect the gas breakdown voltage using streamer theory. Based on these results, a spark gap switch with triggering electrodes is designed. The triggering electrode gap is 2 μm and the main electrode gap is 10 μm. A spark gap switch test circuit is designed based on the RLC circuit. Through finite element simulation, it is verified that the gas breakdown voltage increases nonlinearly with increasing gap size. Pre-breakdown spark gap switches were fabricated based on the surface silicon process and tested. The test results show that the conduction voltage values of the triggering electrode and the main electrode are basically consistent with the simulation and calculation results. The breakdown voltage of the main electrode can be greatly reduced by applying a certain voltage to the triggering electrode, realize the reliable function in the micro fuze system.


Author(s):  
Yaghub Ebrahimi ◽  
◽  
Ali Hemmati ◽  
Ali Reza Mortezaei ◽  
Mahmud Nikkhah Shahmirzadi ◽  
...  

The aim of this study is to evaluate the value of suitable distance due to prevent the impact between two irregular adjacent buildings when earthquake is caused to occur large lateral displacement and damage the elements of buildings. For this purpose, by using a mathematical program based on neural network, the number of stories, the period and height of investigated models, PGD, PGV and PGA of earthquake records are defined and the nonlinear lateral displacements of different structures are determined in order to use in the program. Thus, the results of displacements based on all inputs are listed and the minimum critical distance is approximately estimated based on especial regression. For instance, a 3-4 story model is numerically investigated by Tabas earthquake record, which is suggested to provide required gap size about 70 cm. In fact, each model has to observe a 35 cm gap. A newly developed program based on mathematical equations are applied for determining the lateral displacements of each story. A new mathematical formula is proposed by neural network, which shows the least distance between irregular adjacent buildings. For investigating the accuracy of formula, two different ways are performed and the results of analyses confirm suggested equation. For this challenge, a 2-4 story model is considered and three different critical distances are calculated to be 59, 62 and 75 cm which show the last gap size is able to provide safety gap size, determined by suggested formula.


Forests ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1563
Author(s):  
Silvio Bagnato ◽  
Pasquale A. Marziliano ◽  
Maria Sidari ◽  
Carmelo Mallamaci ◽  
Federica Romeo ◽  
...  

The present study was focused on how cardinal directions inside gaps of different sizes (small, 200 m2; medium, 400 m2; and large, 600 m2) can affect soil characteristics and tree regeneration. Additionally, the effects of gap size on the growth dynamics of trees outside the gaps were evaluated. The study was carried out in a European beech stand located in Aspromonte National Park (Southern Apennines, Calabria, Italy). Microclimatic variables, physical, chemical, and biochemical soil properties, natural regeneration density, and growth trees outside the gaps density of natural regeneration were assessed. This study provided evidence for an important effect of cardinal points on micro-environmental parameter variability, nutrient cycle, physic-chemical soil properties, water availability, and biological processes such as trees growth and regeneration. The European beech natural regeneration was most abundant in the south part of the gaps. Thus, we can state that cardinal points affect the trees natural regeneration in a species-specific manner. The new microclimatic conditions due to the gap opening had positive effects on the tree growth located along the gap edge, especially in the trees sampled on the edges of the medium gaps. On the contrary, the trees located in the forest recorded a productivity coherent with the period prior the gap opening. In medium-sized gaps, the combination and interaction of microclimatic and soil parameters (humification and mineralization process and microbial activity) created the best conditions for beech natural regeneration and favored an increase in the productivity of the trees at the edge of the gaps.


Author(s):  
Michelle Graham ◽  
John J. Socha

In arboreal habitats, direct routes between two locations can be impeded by gaps in the vegetation. Arboreal animals typically use dynamic movements, such as jumping, to navigate these gaps if the distance between supports exceeds their reaching ability. In contrast, most snakes only use the cantilever crawl to cross gaps. This behavior imposes large torques on the animal, inhibiting their gap-crossing capabilities. Flying snakes (Chrysopelea), however, are known to use dynamic behaviors in a different arboreal context: they use a high-acceleration jump to initiate glides. We hypothesize that flying snakes also use jumping take-off behaviors to cross gaps, allowing them to cross larger distances. To test this hypothesis, we used a six-camera motion-capture system to investigate the effect of gap size on crossing behavior in Chrysopelea paradisi, and analyzed the associated kinematics and torque requirements. We found that C. paradisi typically uses cantilevering for small gaps (< 47.5% SVL). Above this distance, C. paradisi were more likely to use dynamic movements than cantilevers, either arching upward or employing a below-branch loop of the body. These dynamic movements extended the range of horizontal crossing to ∼120% SVL. The behaviors used for the largest gaps were kinematically similar to the J-loop jumps used in gliding, and involved smaller torques than the cantilevers. These data suggest that the ability to jump allows flying snakes to access greater resources in the arboreal environment, and supports the broader hypothesis that arboreal animals jump across gaps only when reaching is not mechanically possible.


Sign in / Sign up

Export Citation Format

Share Document