inverse subsemigroups
Recently Published Documents


TOTAL DOCUMENTS

55
(FIVE YEARS 0)

H-INDEX

9
(FIVE YEARS 0)

2020 ◽  
Vol 108 (3-4) ◽  
pp. 550-556
Author(s):  
K. H. Hovsepyan


2018 ◽  
Vol 28 (05) ◽  
pp. 837-875 ◽  
Author(s):  
Thomas Quinn-Gregson

An inverse semigroup [Formula: see text] is a semigroup in which every element has a unique inverse in the sense of semigroup theory, that is, if [Formula: see text] then there exists a unique [Formula: see text] such that [Formula: see text] and [Formula: see text]. We say that a countable inverse semigroup [Formula: see text] is a homogeneous (inverse) semigroup if any isomorphism between finitely generated (inverse) subsemigroups of [Formula: see text] extends to an automorphism of [Formula: see text]. In this paper, we consider both these concepts of homogeneity for inverse semigroups, and show when they are equivalent. We also obtain certain classifications of homogeneous inverse semigroups, in particular periodic commutative inverse semigroups. Our results may be seen as extending both the classification of homogeneous semilattices and the classification of certain classes of homogeneous groups, such as homogeneous abelian groups and homogeneous finite groups.



2018 ◽  
Vol 96 (3) ◽  
pp. 581-595
Author(s):  
Bernd Billhardt ◽  
Jintana Sanwong ◽  
Worachead Sommanee


Author(s):  
Worachead Sommanee

Let TX be the full transformation semigroup on a set X. For a fixed nonempty subset Y of a set X, let TX,Y be the semigroup consisting of all full transformations from X into Y. In a paper published in 2008, Sanwong and Sommanee proved that the set FX,Y=α∈TX,Y:Xα=Yα is the largest regular subsemigroup of TX,Y. In this paper, we describe the maximal inverse subsemigroups of FX,Y and completely determine all the maximal regular subsemigroups of its ideals.



2017 ◽  
Vol 96 (3) ◽  
pp. 489-505
Author(s):  
Amal AlAli ◽  
N. D. Gilbert


2017 ◽  
Vol 45 (11) ◽  
pp. 4667-4678 ◽  
Author(s):  
Amal AlAli ◽  
N. D. Gilbert


2016 ◽  
Vol 09 (01) ◽  
pp. 1650042
Author(s):  
Somnuek Worawiset

We classify the maximal Clifford inverse subsemigroups [Formula: see text] of the full transformation semigroup [Formula: see text] on an [Formula: see text]-element set with [Formula: see text] for all [Formula: see text]. This classification differs from the already known classifications of Clifford inverse semigroups, it provides an algorithm for its construction. For a given natural number [Formula: see text], we find also the largest size of an inverse subsemigroup [Formula: see text] of [Formula: see text] satisfying [Formula: see text] with least rank [Formula: see text] for any element in [Formula: see text].



2015 ◽  
Vol 25 (01n02) ◽  
pp. 233-258 ◽  
Author(s):  
L. M. Shneerson

For any positive integer n > 1 we construct an example of inverse semigroup with n generators and n - 1 defining relations which has cubic growth and at least n generators in any presentation. This semigroup has the same set of identities as the free monogenic inverse semigroup. In particular, we give the first example of a one relation nonmonogenic inverse semigroup having polynomial growth. We also prove that for any positive integer n there exists an inverse semigroup ϒn of deficiency 1 and rank n + 1 such that ϒn has exponential growth and it does not contain nonmonogenic free inverse subsemigroups. Furthermore, ϒn satisfies the identity [[x, y], [z, t]]2 = [[x, y], [z, t]] of quasi-solvability and it contains a free subsemigroup of rank 2.



2013 ◽  
Vol 94 (2) ◽  
pp. 234-256 ◽  
Author(s):  
M. V. LAWSON ◽  
S. W. MARGOLIS ◽  
B. STEINBERG

AbstractPaterson showed how to construct an étale groupoid from an inverse semigroup using ideas from functional analysis. This construction was later simplified by Lenz. We show that Lenz’s construction can itself be further simplified by using filters: the topological groupoid associated with an inverse semigroup is precisely a groupoid of filters. In addition, idempotent filters are closed inverse subsemigroups and so determine transitive representations by means of partial bijections. This connection between filters and representations by partial bijections is exploited to show how linear representations of inverse semigroups can be constructed from the groups occurring in the associated topological groupoid.



Sign in / Sign up

Export Citation Format

Share Document