weakly reducible
Recently Published Documents


TOTAL DOCUMENTS

11
(FIVE YEARS 1)

H-INDEX

4
(FIVE YEARS 0)

Author(s):  
Yaru Gao ◽  
Fengling Li ◽  
Liang Liang ◽  
Fengchun Lei

We introduce the [Formula: see text]-splittings for 3-manifolds as follows. For a compact connected surface [Formula: see text] properly embedded in a compact connected orientable 3-manifold [Formula: see text], if [Formula: see text] decomposes [Formula: see text] into two handlebodies [Formula: see text] and [Formula: see text], then [Formula: see text] is called an [Formula: see text]-splitting for [Formula: see text]. Clearly, when [Formula: see text] is closed, this is just the Heegaard splitting for [Formula: see text]; when [Formula: see text] is with boundary, the [Formula: see text]-splitting for [Formula: see text] is different from the Heegaard splitting for [Formula: see text]. In this paper, we first show that any compact connected orientable 3-manifold admits an [Formula: see text]-splitting, then generalize Casson–Gordon theorem on weakly reducible Heegaard splitting to the [Formula: see text]-splitting case in the following version: if [Formula: see text] is a weakly reducible [Formula: see text]-splitting for a compact connected orientable 3-manifold [Formula: see text], then (1) [Formula: see text] contains an incompressible closed surface of positive genus or (2) the [Formula: see text]-splitting [Formula: see text] is reducible or (3) there is an essential 2-sphere [Formula: see text] in [Formula: see text] such that [Formula: see text] is a collection of essential disks in [Formula: see text] and [Formula: see text] is an incompressible and not boundary parallel planar surface in [Formula: see text] with at least two boundary components, where [Formula: see text] or (4) [Formula: see text] is stabilized.


2018 ◽  
Vol 242 ◽  
pp. 33-42
Author(s):  
Liang Liang ◽  
Fengling Li ◽  
Jingyan Li

2017 ◽  
Vol 25 (2) ◽  
pp. e2134 ◽  
Author(s):  
Guanglu Zhou ◽  
Gang Wang ◽  
Liqun Qi ◽  
Mohammed Alqahtani

2007 ◽  
Vol 07 (02) ◽  
pp. 125-143 ◽  
Author(s):  
JOSHUA A. COLE ◽  
STEPHEN G. SIMPSON

A mass problem is a set of Turing oracles. If P and Q are mass problems, we say that P is weakly reducible to Q if for all Y ∈ Q there exists X ∈ P such that X is Turing reducible to Y. A weak degree is an equivalence class of mass problems under mutual weak reducibility. Let [Formula: see text] be the lattice of weak degrees of mass problems associated with nonempty [Formula: see text] subsets of the Cantor space. The lattice [Formula: see text] has been studied in previous publications. The purpose of this paper is to show that [Formula: see text] partakes of hyperarithmeticity. We exhibit a family of specific, natural degrees in [Formula: see text] which are indexed by the ordinal numbers less than [Formula: see text] and which correspond to the hyperarithmetical hierarchy. Namely, for each [Formula: see text], let hα be the weak degree of 0(α), the αth Turing jump of 0. If p is the weak degree of any mass problem P, let p* be the weak degree of the mass problem P* = {Y | ∃X (X ∈ P and BLR (X) ⊆ BLR (Y))} where BLR (X) is the set of functions which are boundedly limit recursive in X. Let 1 be the top degree in [Formula: see text]. We prove that all of the weak degrees [Formula: see text], [Formula: see text], are distinct and belong to [Formula: see text]. In addition, we prove that certain index sets associated with [Formula: see text] are [Formula: see text] complete.


2005 ◽  
Vol 11 (1) ◽  
pp. 1-27 ◽  
Author(s):  
Stephen G. Simpson

AbstractA mass problem is a set of Turing oracles. If P and Q are mass problems, we say that P is weakly reducible to Q if every member of Q Turing computes a member of P. We say that P is strongly reducible to Q if every member of Q Turing computes a member of P via a fixed Turing functional. The weak degrees and strong degrees are the equivalence classes of mass problems under weak and strong reducibility, respectively. We focus on the countable distributive lattices ω and s of weak and strong degrees of mass problems given by nonempty subsets of 2ω. Using an abstract Gödel/Rosser incompleteness property, we characterize the subsets of 2ω whose associated mass problems are of top degree in ω and s, respectively Let R be the set of Turing oracles which are random in the sense of Martin-Löf, and let r be the weak degree of R. We show that r is a natural intermediate degree within ω. Namely, we characterize r as the unique largest weak degree of a subset of 2ω of positive measure. Within ω we show that r is meet irreducible, does not join to 1, and is incomparable with all weak degrees of nonempty thin perfect subsets of 2ω. In addition, we present other natural examples of intermediate degrees in ω. We relate these examples to reverse mathematics, computational complexity, and Gentzen-style proof theory.


2004 ◽  
Vol 13 (06) ◽  
pp. 829-843 ◽  
Author(s):  
YOAV MORIAH ◽  
ERIC SEDGWICK

We show that there are infinitely many two component links in S3 whose complements have weakly reducible and irreducible non-minimal genus Heegaard splittings, yet the construction given in the theorem of Casson and Gordon does not produce an essential closed surface. The situation for manifolds with a single boundary component is still unresolved though we obtain partial results regarding manifolds with a non-minimal genus weakly reducible and irreducible Heegaard splitting.


Sign in / Sign up

Export Citation Format

Share Document