MASS PROBLEMS AND HYPERARITHMETICITY

2007 ◽  
Vol 07 (02) ◽  
pp. 125-143 ◽  
Author(s):  
JOSHUA A. COLE ◽  
STEPHEN G. SIMPSON

A mass problem is a set of Turing oracles. If P and Q are mass problems, we say that P is weakly reducible to Q if for all Y ∈ Q there exists X ∈ P such that X is Turing reducible to Y. A weak degree is an equivalence class of mass problems under mutual weak reducibility. Let [Formula: see text] be the lattice of weak degrees of mass problems associated with nonempty [Formula: see text] subsets of the Cantor space. The lattice [Formula: see text] has been studied in previous publications. The purpose of this paper is to show that [Formula: see text] partakes of hyperarithmeticity. We exhibit a family of specific, natural degrees in [Formula: see text] which are indexed by the ordinal numbers less than [Formula: see text] and which correspond to the hyperarithmetical hierarchy. Namely, for each [Formula: see text], let hα be the weak degree of 0(α), the αth Turing jump of 0. If p is the weak degree of any mass problem P, let p* be the weak degree of the mass problem P* = {Y | ∃X (X ∈ P and BLR (X) ⊆ BLR (Y))} where BLR (X) is the set of functions which are boundedly limit recursive in X. Let 1 be the top degree in [Formula: see text]. We prove that all of the weak degrees [Formula: see text], [Formula: see text], are distinct and belong to [Formula: see text]. In addition, we prove that certain index sets associated with [Formula: see text] are [Formula: see text] complete.

2005 ◽  
Vol 11 (1) ◽  
pp. 1-27 ◽  
Author(s):  
Stephen G. Simpson

AbstractA mass problem is a set of Turing oracles. If P and Q are mass problems, we say that P is weakly reducible to Q if every member of Q Turing computes a member of P. We say that P is strongly reducible to Q if every member of Q Turing computes a member of P via a fixed Turing functional. The weak degrees and strong degrees are the equivalence classes of mass problems under weak and strong reducibility, respectively. We focus on the countable distributive lattices ω and s of weak and strong degrees of mass problems given by nonempty subsets of 2ω. Using an abstract Gödel/Rosser incompleteness property, we characterize the subsets of 2ω whose associated mass problems are of top degree in ω and s, respectively Let R be the set of Turing oracles which are random in the sense of Martin-Löf, and let r be the weak degree of R. We show that r is a natural intermediate degree within ω. Namely, we characterize r as the unique largest weak degree of a subset of 2ω of positive measure. Within ω we show that r is meet irreducible, does not join to 1, and is incomparable with all weak degrees of nonempty thin perfect subsets of 2ω. In addition, we present other natural examples of intermediate degrees in ω. We relate these examples to reverse mathematics, computational complexity, and Gentzen-style proof theory.


1995 ◽  
Vol 60 (4) ◽  
pp. 1273-1300 ◽  
Author(s):  
Greg Hjorth ◽  
Alexander S. Kechris

Our main goal in this paper is to establish a Glimm-Effros type dichotomy for arbitrary analytic equivalence relations.The original Glimm-Effros dichotomy, established by Effros [Ef], [Ef1], who generalized work of Glimm [G1], asserts that if an Fσ equivalence relation on a Polish space X is induced by the continuous action of a Polish group G on X, then exactly one of the following alternatives holds:(I) Elements of X can be classified up to E-equivalence by “concrete invariants” computable in a reasonably definable way, i.e., there is a Borel function f: X → Y, Y a Polish space, such that xEy ⇔ f(x) = f(y), or else(II) E contains a copy of a canonical equivalence relation which fails to have such a classification, namely the relation xE0y ⇔ ∃n∀m ≥ n(x(n) = y(n)) on the Cantor space 2ω (ω = {0,1,2, …}), i.e., there is a continuous embedding g: 2ω → X such that xE0y ⇔ g(x)Eg(y).Moreover, alternative (II) is equivalent to:(II)′ There exists an E-ergodic, nonatomic probability Borel measure on X, where E-ergodic means that every E-invariant Borel set has measure 0 or 1 and E-nonatomic means that every E-equivalence class has measure 0.


1985 ◽  
Vol 25 (3) ◽  
pp. 474-488 ◽  
Author(s):  
V. L. Selivanov

2020 ◽  
pp. 1-44
Author(s):  
STEVEN HURDER ◽  
OLGA LUKINA

A Cantor action is a minimal equicontinuous action of a countably generated group $G$ on a Cantor space $X$ . Such actions are also called generalized odometers in the literature. In this work, we introduce two new conjugacy invariants for Cantor actions, the stabilizer limit group and the centralizer limit group. An action is wild if the stabilizer limit group is an increasing sequence of stabilizer groups without bound and otherwise is said to be stable if this group chain is bounded. For Cantor actions by a finitely generated group $G$ , we prove that stable actions satisfy a rigidity principle and furthermore show that the wild property is an invariant of the continuous orbit equivalence class of the action. A Cantor action is said to be dynamically wild if it is wild and the centralizer limit group is a proper subgroup of the stabilizer limit group. This property is also a conjugacy invariant and we show that a Cantor action with a non-Hausdorff element must be dynamically wild. We then give examples of wild Cantor actions with non-Hausdorff elements, using recursive methods from geometric group theory to define actions on the boundaries of trees.


Author(s):  
Øystein Linnebo

How are the natural numbers individuated? That is, what is our most basic way of singling out a natural number for reference in language or in thought? According to Frege and many of his followers, the natural numbers are cardinal numbers, individuated by the cardinalities of the collections that they number. Another answer regards the natural numbers as ordinal numbers, individuated by their positions in the natural number sequence. Some reasons to favor the second answer are presented. This answer is therefore developed in more detail, involving a form of abstraction on numerals. Based on this answer, a justification for the axioms of Dedekind–Peano arithmetic is developed.


Synthese ◽  
2020 ◽  
Author(s):  
Bjørn Jespersen

AbstractTheories of structured meanings are designed to generate fine-grained meanings, but they are also liable to overgenerate structures, thus drawing structural distinctions without a semantic difference. I recommend the proliferation of very fine-grained structures, so that we are able to draw any semantic distinctions we think we might need. But, in order to contain overgeneration, I argue we should insert some degree of individuation between logical equivalence and structural identity based on structural isomorphism. The idea amounts to forming an equivalence class of different structures according to one or more formal criteria and designating a privileged element as a representative of all the elements, i.e., a first among equals. The proposed method helps us to a cluster of notions of co-hyperintensionality. As a test case, I consider a recent objection levelled against the act theory of structured propositions. I also respond to an objection against my methodology.


1962 ◽  
Vol 69 (5) ◽  
pp. 381-386 ◽  
Author(s):  
Maurice Sion ◽  
Richard Willmott

1966 ◽  
Vol 31 (3) ◽  
pp. 409-414 ◽  
Author(s):  
Kenneth R. Brown ◽  
Hao Wang
Keyword(s):  

In this paper, a simple inductive characterization of the ordinal numbers is stated and developed. The characterization forms the basis for a set of axioms for ordinal theory and also for several short explicit definitions of the ordinals. The axioms are shown to be sufficient for ordinal theory, and, subject to suitable existence assumptions, each of the definitions is shown to imply the axioms.The present results apply to the familiar von Neumann version of the ordinals, but the methods used are easily adapted to other versions.


2014 ◽  
Vol 23 (06) ◽  
pp. 1450032
Author(s):  
Tomas Boothby ◽  
Allison Henrich ◽  
Alexander Leaf

Manturov recently introduced the idea of a free knot, i.e. an equivalence class of virtual knots where equivalence is generated by crossing change and virtualization moves. He showed that if a free knot diagram is associated to a graph that is irreducibly odd, then it is minimal with respect to the number of classical crossings. Not all minimal diagrams of free knots are associated to irreducibly odd graphs, however. We introduce a family of free knot diagrams that arise from certain permutations that are minimal but not irreducibly odd.


Sign in / Sign up

Export Citation Format

Share Document