scholarly journals A topologically minimal, weakly reducible, unstabilized Heegaard splitting of genus three is critical

2016 ◽  
Vol 16 (3) ◽  
pp. 1427-1451 ◽  
Author(s):  
Jungsoo Kim
2004 ◽  
Vol 13 (06) ◽  
pp. 829-843 ◽  
Author(s):  
YOAV MORIAH ◽  
ERIC SEDGWICK

We show that there are infinitely many two component links in S3 whose complements have weakly reducible and irreducible non-minimal genus Heegaard splittings, yet the construction given in the theorem of Casson and Gordon does not produce an essential closed surface. The situation for manifolds with a single boundary component is still unresolved though we obtain partial results regarding manifolds with a non-minimal genus weakly reducible and irreducible Heegaard splitting.


Author(s):  
Yaru Gao ◽  
Fengling Li ◽  
Liang Liang ◽  
Fengchun Lei

We introduce the [Formula: see text]-splittings for 3-manifolds as follows. For a compact connected surface [Formula: see text] properly embedded in a compact connected orientable 3-manifold [Formula: see text], if [Formula: see text] decomposes [Formula: see text] into two handlebodies [Formula: see text] and [Formula: see text], then [Formula: see text] is called an [Formula: see text]-splitting for [Formula: see text]. Clearly, when [Formula: see text] is closed, this is just the Heegaard splitting for [Formula: see text]; when [Formula: see text] is with boundary, the [Formula: see text]-splitting for [Formula: see text] is different from the Heegaard splitting for [Formula: see text]. In this paper, we first show that any compact connected orientable 3-manifold admits an [Formula: see text]-splitting, then generalize Casson–Gordon theorem on weakly reducible Heegaard splitting to the [Formula: see text]-splitting case in the following version: if [Formula: see text] is a weakly reducible [Formula: see text]-splitting for a compact connected orientable 3-manifold [Formula: see text], then (1) [Formula: see text] contains an incompressible closed surface of positive genus or (2) the [Formula: see text]-splitting [Formula: see text] is reducible or (3) there is an essential 2-sphere [Formula: see text] in [Formula: see text] such that [Formula: see text] is a collection of essential disks in [Formula: see text] and [Formula: see text] is an incompressible and not boundary parallel planar surface in [Formula: see text] with at least two boundary components, where [Formula: see text] or (4) [Formula: see text] is stabilized.


2006 ◽  
Vol 15 (02) ◽  
pp. 259-277 ◽  
Author(s):  
MICHAEL McLENDON

Given a Heegaard splitting of a closed 3-manifold, the skein modules of the two handlebodies are modules over the skein algebra of their common boundary surface. The zeroth Hochschild homology of the skein algebra of a surface with coefficients in the tensor product of the skein modules of two handlebodies is interpreted as the skein module of the 3-manifold obtained by gluing the two handlebodies together along this surface. A spectral sequence associated to the Hochschild complex is constructed and conditions are given for the existence of algebraic torsion in the completion of the skein module of this 3-manifold.


2018 ◽  
Vol 27 (09) ◽  
pp. 1842003
Author(s):  
Liang Liang ◽  
Fengling Li ◽  
Fengchun Lei ◽  
Jie Wu

Suppose [Formula: see text] is a Heegaard splitting and [Formula: see text] is an essential separating disk in [Formula: see text] such that a component of [Formula: see text] is homeomorphic to [Formula: see text], [Formula: see text]. In this paper, we prove that if there is a locally complicated simplicial path in [Formula: see text] connecting [Formula: see text] to [Formula: see text], then the geodesic connecting [Formula: see text] to [Formula: see text] is unique. Moreover, we give a sufficient condition such that [Formula: see text] is keen and the geodesic between any pair of essential disks on the opposite sides has local uniqueness property.


1990 ◽  
Vol 108 (3) ◽  
pp. 467-474 ◽  
Author(s):  
John Hempel

For X a subset of a group G, the smallest normal subgroup of G which contains X is called the normal closure of X and is denoted by ngp (X; G) or simply by ngp (X) if there is no possibility of ambiguity. By a surface group we mean the fundamental group of a compact surface. We are interested in determining when a normal subgroup of a surface group contains a simple loop – the homotopy class of an embedding of S1 in the surface, or more generally, a power of a simple loop. This is significant to the study of 3-manifolds since a Heegaard splitting of a 3-manifold is reducible (cf. [2]) if and only if the kernel of the corresponding splitting homomorphism contains a simple loop. We give an answer in the case that the normal subgroup is the normal closure ngp (α) of a single element α: if ngp (α) contains a (power of a) simple loop β then α is homotopic to a (power of a) simple loop and β±1 is homotopic either to (a power of) α or to the commutator [α, γ] of a with some simple loop γ meeting a transversely in a single point. This implies that if a is not homotopic to a power of a simple loop, then the quotient map π1(S) → π1(S)/ngp (α) does not factor through a group with more than one end. In the process we show that π1(S)/ngp (α) is locally indicable if and only if α is not a proper power and that α always lifts to a simple loop in the covering space Sα of S corresponding to ngp (α). We also obtain some estimates on the minimal number of double points in certain homotopy classes of loops.


2005 ◽  
Vol 11 (1) ◽  
pp. 1-27 ◽  
Author(s):  
Stephen G. Simpson

AbstractA mass problem is a set of Turing oracles. If P and Q are mass problems, we say that P is weakly reducible to Q if every member of Q Turing computes a member of P. We say that P is strongly reducible to Q if every member of Q Turing computes a member of P via a fixed Turing functional. The weak degrees and strong degrees are the equivalence classes of mass problems under weak and strong reducibility, respectively. We focus on the countable distributive lattices ω and s of weak and strong degrees of mass problems given by nonempty subsets of 2ω. Using an abstract Gödel/Rosser incompleteness property, we characterize the subsets of 2ω whose associated mass problems are of top degree in ω and s, respectively Let R be the set of Turing oracles which are random in the sense of Martin-Löf, and let r be the weak degree of R. We show that r is a natural intermediate degree within ω. Namely, we characterize r as the unique largest weak degree of a subset of 2ω of positive measure. Within ω we show that r is meet irreducible, does not join to 1, and is incomparable with all weak degrees of nonempty thin perfect subsets of 2ω. In addition, we present other natural examples of intermediate degrees in ω. We relate these examples to reverse mathematics, computational complexity, and Gentzen-style proof theory.


Author(s):  
B. Zimmermann

We present a closed hyperbolic 3-manifold M with some surprising properties. The universal covering group of M is a normal torsion-free subgroup of minimal index in one of the nine Coxeter groups G, generated by the reflections in the faces of one of the nine Lannér-tetrahedra (bounded tetrahedra in hyperbolic 3-space all of whose dihedral angles are of the form π/n with n ∈ ℕ see [1] or [3]). The corresponding Coxeter group G splits as a semidirect product G = π1M⋉A, where A is a finite subgroup of G, and G is the only one of the nine Coxeter groups associated to the Lannér-tetrahedra which admits such a splitting (this follows using results in [4]). We derive a presentation of π1M and show that the first homology group H1(M) of M is isomorphic to ℚ11. This is in sharp contrast to other torsion-free (non-normal) subgroups of finite index in Coxeter groups constructed in [1] which all have finite first homology (though it is known that they are all virtually ℚ-representable (see [5], p. 434). It follows from our computations that the Heegaard genus of M is 11, and that there exists a Heegaard splitting of M of genus 11 invariant under the action of the group I+(M) ≌ S5 ⊕ ℚ2 of orientation-preserving isometries of M (we compute this group in [4]), so that the Heegaard genus of M is equal to the equivariant Heegaard genus of the action of I+(M) on M. Moreover M is maximally symmetric in the sense of [4, 6]: the order 120 of the subgroup of index 2 in I+(M) which preserves both handle-bodies of the Heegaard splitting is the maximal possible order of a group of orientation-preserving diffeomorphisms of a handle-body of genus 11. (This maximal order is 12(g—1) for a handle-body of genus g; see [7].) By taking the coverings Mq of M corresponding to the surjections π1M→H1(M) ≌ ℚ11→(ℚq)11 for q ∈ ℕ, we obtain explicitly an infinite series of maximally symmetric hyperbolic 3-manifolds.


2004 ◽  
Vol 14 (08) ◽  
pp. 2525-2553 ◽  
Author(s):  
IGOR N. GASHENENKO ◽  
PETER H. RICHTER

The general Euler-Poisson problem of rigid body motion is investigated. We study the three-dimensional algebraic level surfaces of the first integrals, and their topological bifurcations. The main result of this article is an analytical and qualitatively complete description of the projections of these integral manifolds to the body-fixed space of angular velocities. We classify the possible types of these invariant sets and analyze the dependence of their topology on the parameters of the body and the constants of the first integrals. Particular emphasis is given to the enveloping surfaces of the sets of admissible angular velocities. Their pre-images in the reduced phase space induce a Heegaard splitting which lends itself for a general choice of complete Poincaré surfaces of section, irrespective of whether or not the system is integrable.


Sign in / Sign up

Export Citation Format

Share Document