bilinear control problem
Recently Published Documents


TOTAL DOCUMENTS

7
(FIVE YEARS 1)

H-INDEX

2
(FIVE YEARS 1)

2020 ◽  
Vol 26 ◽  
pp. 29 ◽  
Author(s):  
Francisco Guillén-González ◽  
Exequiel Mallea-Zepeda ◽  
María Ángeles Rodríguez-Bellido

In this paper, we study a bilinear optimal control problem associated to a chemo-repulsion model with linear production term in a bidimensional domain. The existence, uniqueness and regularity of strong solutions of this model are deduced, proving the existence of a global optimal solution. Afterwards, we derive first-order optimality conditions by using a Lagrange multipliers theorem.


2018 ◽  
Vol 8 (3) ◽  
pp. 557-582 ◽  
Author(s):  
Tobias Breiten ◽  
◽  
Karl Kunisch ◽  
Laurent Pfeiffer ◽  

Author(s):  
Katherine A. Kime

We consider control of the one-dimensional Schroedinger equation through a time-varying potential. Using a finite difference semi-discretization, we consider increasing the extent of the potential from a single central grid-point in space to two or more gridpoints. With the differential geometry package in Maple 8, we compute and compare the corresponding Control Lie Algebras, identifying a trend in the number of elements which span the Control Lie Algebras.


Author(s):  
Katherine A. Kime

We consider the one-dimensional Schroedinger equation in which the control is a time-dependent rectangular potential barrier/well. This is a bilinear control problem, as the potential multiplies the state. Differential geometric methods have been used to treat the bilinear control of systems of finitely many ODEs, and have been applied to the Schroedinger equation (quantum systems). In this paper we will calculate, using MATLAB, explicit controls which steer localized initial data to localized terminal data. These will be obtained using the Crank-Nicolson approximation, in which both space and time are discretized. If one semi-discretizes, in space, one obtains a bilinear control problem for a system of finitely many ODEs. One may pass from the semi-discretized system to Crank-Nicolson using the trapezoid rule. Thus the controls we calculate may be used to construct approximations to controls for the system of ODEs.


Sign in / Sign up

Export Citation Format

Share Document