In this study, we focus on designing a robust piecewise adaptive controller to globally asymptotically stabilize a semilinear parabolic distributed parameter systems (DPSs) with external disturbance, whose nonlinearities are bounded by unknown functions. Firstly, a robust piecewise adaptive control is designed against the unknown nonlinearity and the external disturbance. Then, by constructing an appropriate Lyapunov–Krasovskii functional candidate (LKFC) and using the Wiritinger’s inequality and a variant of the Agmon’s inequality, it is shown that the proposed robust piecewise adaptive controller not only ensures the globally asymptotic stability of the closed-loop system, but also guarantees a given performance. Finally, two simulation examples are given to verify the validity of the design method.