commutative banach algebra
Recently Published Documents


TOTAL DOCUMENTS

72
(FIVE YEARS 2)

H-INDEX

7
(FIVE YEARS 0)

Author(s):  
NASRIN ALIZADEH ◽  
ALI EBADIAN ◽  
SAEID OSTADBASHI ◽  
ALI JABBARI

Abstract Let A be a Banach algebra and let X be a Banach A-bimodule. We consider the Banach algebra ${A\oplus _1 X}$ , where A is a commutative Banach algebra. We investigate the Bochner–Schoenberg–Eberlein (BSE) property and the BSE module property on $A\oplus _1 X$ . We show that the module extension Banach algebra $A\oplus _1 X$ is a BSE Banach algebra if and only if A is a BSE Banach algebra and $X=\{0\}$ . Furthermore, we consider $A\oplus _1 X$ as a Banach $A\oplus _1 X$ -module and characterise the BSE module property on $A\oplus _1 X$ . We show that $A\oplus _1 X$ is a BSE Banach $A\oplus _1 X$ -module if and only if A and X are BSE Banach A-modules.



2021 ◽  
Vol 5 (1) ◽  
pp. p20
Author(s):  
Musa Siddig ◽  
Shawgy Hussein ◽  
Amani Elseid

We show the validity of a complete description of closed ideals of the algebra which is a commutative Banach algebra , that endowed with a pointwise operations act on Dirichlet space of algebra of series of analytic functions on the unit disk  satisfying the Lipscitz condition of order of square sequence  obtained by (Brahim Bouya, 2008), we introduce and deal with approximation square functions which is an outer functions to produce and show results in .



2019 ◽  
Vol 11 (1) ◽  
pp. 158-162
Author(s):  
H.M. Pryimak

It is known due to R. Aron, B. Cole and T. Gamelin that every complex homomorphism of the algebra of entire functions of bounded type on a Banach space $X$ can be approximated in some sense by a net of point valued homomorphism. In this paper we consider the question about a generalization of this result for the case of homomorphisms to any commutative Banach algebra $A.$ We obtained some positive results if $A$ is the algebra of uniformly continuous analytic functions on the unit ball of $X.$



Author(s):  
Lakshika Chutani ◽  
Niraj Kumar ◽  
Garima Manocha

We consider a class F of entire Dirichlet series in n variables, whose coefficients belong to a commutative Banach algebra E. With a well defined norm, F is proved to be a Banach algebra with identity. Further results on quasi-invertibility, spectrum and continuous linear functionals are proved for elements belonging to F.



2018 ◽  
Vol 11 (02) ◽  
pp. 1850021 ◽  
Author(s):  
A. Zivari-Kazempour

We prove that each surjective Jordan homomorphism from a Banach algebra [Formula: see text] onto a semiprime commutative Banach algebra [Formula: see text] is a homomorphism, and each 5-Jordan homomorphism from a unital Banach algebra [Formula: see text] into a semisimple commutative Banach algebra [Formula: see text] is a 5-homomorphism.



2017 ◽  
Vol 68 (1) ◽  
pp. 69-79
Author(s):  
Surinder Pal Singh ◽  
Savita Bhatnagar

Abstract We investigate the space of vector valued multipliers of strongly Henstock-Kurzweil integrable functions. We prove that if X is a commutative Banach algebra with identity e such that ‖e‖ = 1 and g : [a, b] → X is of strongly bounded variation, then the multiplication operator defined by Mg(f) := fg maps 𝒮ℋ𝒦 to ℋ𝒦. We also prove a partial converse, when X is a Gel’fand space.



2017 ◽  
Vol 60 (1) ◽  
pp. 153-163
Author(s):  
AZADEH NIKOU ◽  
ANTHONY G. O'FARRELL

AbstractThis paper is about the connection between certain Banach-algebraic properties of a commutative Banach algebra E with unit and the associated commutative Banach algebra C(X, E) of all continuous functions from a compact Hausdorff space X into E. The properties concern Ditkin's condition and bounded relative units. We show that these properties are shared by E and C(X, E). We also consider the relationship between these properties in the algebras E, B and $\~{B}$ that appear in the so-called admissible quadruples (X, E, B, $\~{B}$).



2017 ◽  
Vol 2017 ◽  
pp. 1-5 ◽  
Author(s):  
Abbas Zivari-Kazempour

For Banach algebras A and B, we show that if U=A×B is unital and commutative, each bi-Jordan homomorphism from U into a semisimple commutative Banach algebra D is a bihomomorphism.



2016 ◽  
Vol 162 (3) ◽  
pp. 405-418 ◽  
Author(s):  
CHRISTOPH AISTLEITNER ◽  
FLORIAN PAUSINGER ◽  
ANNE MARIE SVANE ◽  
ROBERT F. TICHY

AbstractThe recently introduced concept of ${\mathcal D}$-variation unifies previous concepts of variation of multivariate functions. In this paper, we give an affirmative answer to the open question from [20] whether every function of bounded Hardy–Krause variation is Borel measurable and has bounded ${\mathcal D}$-variation. Moreover, we show that the space of functions of bounded ${\mathcal D}$-variation can be turned into a commutative Banach algebra.



Sign in / Sign up

Export Citation Format

Share Document