rank variety
Recently Published Documents


TOTAL DOCUMENTS

4
(FIVE YEARS 0)

H-INDEX

1
(FIVE YEARS 0)

2015 ◽  
Vol DMTCS Proceedings, 27th... (Proceedings) ◽  
Author(s):  
Brendan Pawlowski

International audience To each finite subset of a discrete grid $\mathbb{N}×\mathbb{N}$ (a diagram), one can associate a subvariety of a complex Grassmannian (a diagram variety), and a representation of a symmetric group (a Specht module). Liu has conjectured that the cohomology class of a diagram variety is represented by the Frobenius characteristic of the corresponding Specht module. We give a counterexample to this conjecture.However, we show that for the diagram variety of a permutation diagram, Liu's conjectured cohomology class $\sigma$ is at least an upper bound on the actual class $\tau$, in the sense that $\sigma - \tau$ is a nonnegative linear combination of Schubert classes. To do this, we consider a degeneration of Coskun's rank varieties which contains the appropriate diagram variety as a component. Rank varieties are instances of Knutson-Lam-Speyer's positroid varieties, whose cohomology classes are represented by affine Stanley symmetric functions. We show that the cohomology class of a rank variety is in fact represented by an ordinary Stanley symmetric function. A chaque sous-ensemble fini de $\mathbb{N}×\mathbb{N}$ (un diagramme), on peut associer une sous-variété d’une grassmannienne complexe et une représentation d’un groupe symétrique (un module de Specht). Liu a conjecturé que la classe de cohomologie de la variété d’un diagramme est représentée par la caractéristique de Frobenius du module de Specht correspondant. Nous donnons un contre-exemple à cette conjecture.Cependant, nous montrons que dans le cas de la variété du diagramme de permutation, la classe de cohomologie conjecturée par Liu est au moins un majorant de la classe juste $\tau$ , c’est-à-dire que $\sigma - \tau$ est une combinaison linéaire non-négative des classes de Schubert. Pour ce faire, nous considérons une dégénérescence des variétés de rang de Coskun qui contient la variété appropriée d’un diagramme comme une composante irréductible. Les variétés de rang sont des exemples de variétés de positroïde, dont les classes de cohomologie sont représentées par des fonctions symétriques de Stanley affines. En effet, nous montrons que la classe de cohomologie d’une variété de rang est représentée par une fonction symétrique de Stanley ordinaire.


2012 ◽  
Vol 140 (12) ◽  
pp. 4127-4129
Author(s):  
Masaya Ouchi ◽  
Michio Hamada ◽  
Tatsuo Kimura
Keyword(s):  

1997 ◽  
Vol 196 (2) ◽  
pp. 475-489
Author(s):  
J. Klimek ◽  
W. Kraśkiewicz ◽  
J. Weyman
Keyword(s):  

1996 ◽  
Vol 120 (4) ◽  
pp. 597-615 ◽  
Author(s):  
D. J. Benson ◽  
Jon F. Carlson ◽  
J. Rickard

It has now been almost twenty years since Alperin introduced the idea of the complexity of a finitely generated kG-module, when G is a finite group and k is a field of characteristic p > 0. In proving one of the first major results in the area [1], Alperin and Evens demonstrated the connection of the study of complexity for modules to the group cohomology. That connection eventually led to the categorization of modules according to their associated varieties in the maximal ideal spectrum of the cohomology ring H*(G, k). In all of the work that has followed, two principles have proved to be extremely important. The first is that the associated variety of a module is directly related to the structure of the module through the rank variety which is defined by the matrix representation of the module. The second major result is the tensor product theorem which says that the variety associated to a tensor product M ⊗kN is the intersection of the varieties associated to the modules M and N. In this paper we generalize these results to infinitely generated kG-modules.


Sign in / Sign up

Export Citation Format

Share Document