schubert classes
Recently Published Documents


TOTAL DOCUMENTS

40
(FIVE YEARS 8)

H-INDEX

7
(FIVE YEARS 0)

2021 ◽  
Vol 28 (03) ◽  
pp. 379-398
Author(s):  
Kai Zhou ◽  
Jun Hu

Let [Formula: see text] and [Formula: see text] be positive integers such that [Formula: see text], and let [Formula: see text] be the Grassmannian which consists of the set of [Formula: see text]-dimensional subspaces of [Formula: see text]. There is a [Formula: see text]-graded algebra isomorphism between the cohomology [Formula: see text] of [Formula: see text] and a natural [Formula: see text]-form [Formula: see text] of the [Formula: see text]-graded basic algebra of the type [Formula: see text] cyclotomic nilHecke algebra [Formula: see text]. We show that the isomorphism can be chosen such that the image of each (geometrically defined) Schubert class [Formula: see text] coincides with the basis element [Formula: see text] constructed by Hu and Liang by purely algebraic method, where [Formula: see text] with [Formula: see text] for each [Formula: see text], and [Formula: see text] is the [Formula: see text]-multipartition of [Formula: see text] associated to [Formula: see text]. A similar correspondence between the Schubert class basis of the cohomology of the Grassmannian [Formula: see text] and the [Formula: see text]'s basis ([Formula: see text] is an [Formula: see text]-multipartition of [Formula: see text] with each component being either [Formula: see text] or empty) of the natural [Formula: see text]-form [Formula: see text] of the [Formula: see text]-graded basic algebra of [Formula: see text] is also obtained. As an application, we obtain a second version of the Giambelli formula for Schubert classes.


2021 ◽  
Vol 157 (5) ◽  
pp. 883-962
Author(s):  
Thomas Lam ◽  
Seung Jin Lee ◽  
Mark Shimozono

We study the back stable Schubert calculus of the infinite flag variety. Our main results are: – a formula for back stable (double) Schubert classes expressing them in terms of a symmetric function part and a finite part; – a novel definition of double and triple Stanley symmetric functions; – a proof of the positivity of double Edelman–Greene coefficients generalizing the results of Edelman–Greene and Lascoux–Schützenberger; – the definition of a new class of bumpless pipedreams, giving new formulae for double Schubert polynomials, back stable double Schubert polynomials, and a new form of the Edelman–Greene insertion algorithm; – the construction of the Peterson subalgebra of the infinite nilHecke algebra, extending work of Peterson in the affine case; – equivariant Pieri rules for the homology of the infinite Grassmannian; – homology divided difference operators that create the equivariant homology Schubert classes of the infinite Grassmannian.


Author(s):  
Leonardo C Mihalcea ◽  
Hiroshi Naruse ◽  
Changjian Su

Abstract We study the Demazure–Lusztig operators induced by the left multiplication on partial flag manifolds $G/P$. We prove that they generate the Chern–Schwartz–MacPherson classes of Schubert cells (in equivariant cohomology), respectively their motivic Chern classes (in equivariant K-theory), in any partial flag manifold. Along the way, we advertise many properties of the left and right divided difference operators in cohomology and K-theory and their actions on Schubert classes. We apply this to construct left divided difference operators in equivariant quantum cohomology, and equivariant quantum K-theory, generating Schubert classes and satisfying a Leibniz rule compatible with the quantum product.


2021 ◽  
Vol 9 ◽  
Author(s):  
Takafumi Kouno ◽  
Satoshi Naito ◽  
Daniel Orr ◽  
Daisuke Sagaki

Abstract We prove an explicit inverse Chevalley formula in the equivariant K-theory of semi-infinite flag manifolds of simply laced type. By an ‘inverse Chevalley formula’ we mean a formula for the product of an equivariant scalar with a Schubert class, expressed as a $\mathbb {Z}\left [q^{\pm 1}\right ]$ -linear combination of Schubert classes twisted by equivariant line bundles. Our formula applies to arbitrary Schubert classes in semi-infinite flag manifolds of simply laced type and equivariant scalars $e^{\lambda }$ , where $\lambda $ is an arbitrary minuscule weight. By a result of Stembridge, our formula completely determines the inverse Chevalley formula for arbitrary weights in simply laced type except for type $E_8$ . The combinatorics of our formula is governed by the quantum Bruhat graph, and the proof is based on a limit from the double affine Hecke algebra. Thus our formula also provides an explicit determination of all nonsymmetric q-Toda operators for minuscule weights in ADE type.


2020 ◽  
Vol DMTCS Proceedings, 28th... ◽  
Author(s):  
Huilan Li ◽  
Jennifer Morse ◽  
Pat Shields

International audience The problem of computing products of Schubert classes in the cohomology ring can be formulated as theproblem of expanding skew Schur polynomial into the basis of ordinary Schur polynomials. We reformulate theproblem of computing the structure constants of the Grothendieck ring of a Grassmannian variety with respect to itsbasis of Schubert structure sheaves in a similar way; we address the problem of expanding the generating functions forskew reverse-plane partitions into the basis of polynomials which are Hall-dual to stable Grothendieck polynomials. From this point of view, we produce a chain of bijections leading to Buch’s K-theoretic Littlewood-Richardson rule.


2020 ◽  
Vol 31 (03) ◽  
pp. 2050019
Author(s):  
Vladimiro Benedetti ◽  
Laurent Manivel

We compute the small cohomology ring of the Cayley Grassmannian, that parametrizes four-dimensional subalgebras of the complexified octonions. We show that all the Gromov–Witten invariants in the multiplication table of the Schubert classes are nonnegative and deduce Golyshev’s conjecture [Formula: see text] holds true for this variety. We also check that the quantum cohomology is semisimple and that there exists, as predicted by Dubrovin’s conjecture, an exceptional collection of maximal length in the derived category.


2019 ◽  
Vol 19 (6) ◽  
pp. 1889-1929
Author(s):  
Cristian Lenart ◽  
Kirill Zainoulline ◽  
Changlong Zhong

We study the equivariant oriented cohomology ring $\mathtt{h}_{T}(G/P)$ of partial flag varieties using the moment map approach. We define the right Hecke action on this cohomology ring, and then prove that the respective Bott–Samelson classes in $\mathtt{h}_{T}(G/P)$ can be obtained by applying this action to the fundamental class of the identity point, hence generalizing previously known results of Chow groups by Brion, Knutson, Peterson, Tymoczko and others. Our main result concerns the equivariant oriented cohomology theory $\mathfrak{h}$ corresponding to the 2-parameter Todd genus. We give a new interpretation of Deodhar’s parabolic Kazhdan–Lusztig basis, i.e., we realize it as some cohomology classes (the parabolic Kazhdan–Lusztig (KL) Schubert classes) in $\mathfrak{h}_{T}(G/P)$. We make a positivity conjecture, and a conjecture about the relationship of such classes with smoothness of Schubert varieties. We also prove the latter in several special cases.


2019 ◽  
Vol 244 (2) ◽  
pp. 191-208
Author(s):  
Lionel Darondeau ◽  
Piotr Pragacz
Keyword(s):  

10.37236/6960 ◽  
2018 ◽  
Vol 25 (4) ◽  
Author(s):  
Brendan Pawlowski

To each finite subset of $\mathbb{Z}^2$ (a diagram), one can associate a subvariety of a complex Grassmannian (a diagram variety), and a representation of a symmetric group (a Specht module). Liu has conjectured that the cohomology class of a diagram variety is represented by the Frobenius characteristic of the corresponding Specht module. We give a counterexample to this conjecture.However, we show that for the diagram variety of a permutation diagram, Liu's conjectured cohomology class $\sigma$ is at least an upper bound on the actual class $\tau$, in the sense that $\sigma - \tau$ is a nonnegative linear combination of Schubert classes. To do this, we exhibit the appropriate diagram variety as a component in a degeneration of one of Knutson's interval positroid varieties (up to Grassmann duality). A priori, the cohomology classes of these interval positroid varieties are represented by affine Stanley symmetric functions. We give a different formula for these classes as ordinary Stanley symmetric functions, one with the advantage of being Schur-positive and compatible with inclusions between Grassmannians.


Sign in / Sign up

Export Citation Format

Share Document