ordered set partitions
Recently Published Documents


TOTAL DOCUMENTS

14
(FIVE YEARS 0)

H-INDEX

4
(FIVE YEARS 0)

10.37236/9610 ◽  
2020 ◽  
Vol 27 (4) ◽  
Author(s):  
Brendon Rhoades ◽  
Tianyi Yu ◽  
Zehong Zhao

Let $k \leq n$ be nonnegative integers and let $\lambda$ be a partition of $k$. S. Griffin recently introduced a quotient $R_{n,\lambda}$ of the polynomial ring  $\mathbb{Q}[x_1, \dots, x_n]$ in $n$ variables which simultaneously generalizes the  Delta Conjecture coinvariant rings of Haglund-Rhoades-Shimozono and the cohomology rings of Springer fibers studied by Tanisaki and Garsia-Procesi. We describe the space $V_{n,\lambda}$ of harmonics attached to $R_{n,\lambda}$  and produce a harmonic basis of $R_{n,\lambda}$ indexed by certain ordered set partitions $\mathcal{OP}_{n,\lambda}$. The combinatorics of this basis is governed by a new extension of  the Lehmer code of a permutation to $\mathcal{OP}_{n, \lambda}$.



2020 ◽  
Vol DMTCS Proceedings, 28th... ◽  
Author(s):  
James Haglund ◽  
Jeffrey B. Remmel ◽  
Andrew Timothy Wilson

International audience We conjecture two combinatorial interpretations for the symmetric function ∆eken, where ∆f is an eigenoperator for the modified Macdonald polynomials defined by Bergeron, Garsia, Haiman, and Tesler. Both interpretations can be seen as generalizations of the Shuffle Conjecture, a statement originally conjectured by Haglund, Haiman, Remmel, Loehr, and Ulyanov and recently proved by Carlsson and Mellit. We show how previous work of the second and third authors on Tesler matrices and ordered set partitions can be used to verify several cases of our conjectures. Furthermore, we use a reciprocity identity and LLT polynomials to prove another case. Finally, we show how our conjectures inspire 4-variable generalizations of the Catalan numbers, extending work of Garsia, Haiman, and the first author.



2019 ◽  
Vol 147 (5) ◽  
pp. 1839-1850
Author(s):  
Jia Huang ◽  
Brendon Rhoades ◽  
Travis Scrimshaw


2019 ◽  
Vol 10 (3) ◽  
pp. 433-490
Author(s):  
Dun Qiu ◽  
Jeffrey Remmel


2018 ◽  
Vol 329 ◽  
pp. 851-915 ◽  
Author(s):  
James Haglund ◽  
Brendon Rhoades ◽  
Mark Shimozono


2018 ◽  
Vol 1 (1) ◽  
pp. 47-80 ◽  
Author(s):  
Jia Huang ◽  
Brendon Rhoades


2015 ◽  
Vol 134 ◽  
pp. 242-277 ◽  
Author(s):  
Jeffrey B. Remmel ◽  
Andrew Timothy Wilson


2015 ◽  
Vol DMTCS Proceedings, 27th... (Proceedings) ◽  
Author(s):  
Andrew Timothy Wilson

International audience We generalize previous definitions of Tesler matrices to allow negative matrix entries and non-positive hook sums. Our main result is an algebraic interpretation of a certain weighted sum over these matrices. Our interpretation uses <i>virtual Hilbert series</i>, a new class of symmetric function specializations which are defined by their values on (modified) Macdonald polynomials. As a result of this interpretation, we obtain a Tesler matrix expression for the Hall inner product $\langle \Delta_f e_n, p_{1^{n}}\rangle$, where $\Delta_f$ is a symmetric function operator from the theory of diagonal harmonics. We use our Tesler matrix expression, along with various facts about Tesler matrices, to provide simple formulas for $\langle \Delta_{e_1} e_n, p_{1^{n}}\rangle$ and $\langle \Delta_{e_k} e_n, p_{1^{n}}\rangle \mid_{t=0}$ involving $q; t$-binomial coefficients and ordered set partitions, respectively. Nous généralisons les définitions précédentes de matrices Tesler pour permettre les entrées de la matrice négatives et des montants crochet non-positifs. Notre principal résultat est une interprétation algébrique d’une certaine somme pondérée sur ces matrices. Notre interprétation utilise <i>série de Hilbert virtuel</i>, une nouvelle classe de spécialisations fonctionnelles symétriques qui sont définies par leurs valeurs sur les polynômes de Macdonald (modifiées). À la suite de cette interprétation, on obtient une expression de la matrice Tesler pour la salle intérieure produit $\langle \Delta_f e_n, p_{1^{n}}\rangle$, où $\Delta_f$ est un opérateur de fonction symétrique de la théorie harmonique de diagonale. Nous utilisons notre expression de la matrice Tesler, ainsi que divers faits sur des matrices Tesler, de fournir des formules simples pour $\langle \Delta_{e_1} e_n, p_{1^{n}}\rangle$ et $\langle \Delta_{e_k} e_n, p_{1^{n}}\rangle \mid_{t=0}$ impliquant $q; t$-coefficients binomial et ensemble ordonné partitions, respectivement.





Sign in / Sign up

Export Citation Format

Share Document