pattern avoidance
Recently Published Documents


TOTAL DOCUMENTS

133
(FIVE YEARS 16)

H-INDEX

10
(FIVE YEARS 1)

2022 ◽  
Vol 345 (1) ◽  
pp. 112635
Author(s):  
Zhijun Cai ◽  
Jian Ding ◽  
Zhousheng Mei ◽  
Suijie Wang
Keyword(s):  

10.37236/9014 ◽  
2021 ◽  
Vol 28 (4) ◽  
Author(s):  
Benjamin Gunby ◽  
Maxwell Fishelson

A classic result of Marcus and Tardos (previously known as the Stanley-Wilf conjecture) bounds from above the number of $n$-permutations ($\sigma \in S_n$) that do not contain a specific sub-permutation. In particular, it states that for any fixed permutation $\pi$, the number of $n$-permutations that avoid $\pi$ is at most exponential in $n$. In this paper, we generalize this result. We bound the number of avoidant $n$-permutations even if they only have to avoid $\pi$ at specific indices. We consider a $k$-uniform hypergraph $\Lambda$ on $n$ vertices and count the $n$-permutations that avoid $\pi$ at the indices corresponding to the edges of $\Lambda$. We analyze both the random and deterministic hypergraph cases. This problem was originally proposed by Asaf Ferber. When $\Lambda$ is a random hypergraph with edge density $\alpha$, we show that the expected number of $\Lambda$-avoiding $n$-permutations is bounded (both upper and lower) as $\exp(O(n))\alpha^{-\frac{n}{k-1}}$, using a supersaturation version of F\"{u}redi-Hajnal. In the deterministic case we show that, for $\Lambda$ containing many size $L$ cliques, the number of $\Lambda$-avoiding $n$-permutations is $O\left(\frac{n\log^{2+\epsilon}n}{L}\right)^n$, giving a nontrivial bound with $L$ polynomial in $n$. Our main tool in the analysis of this deterministic case is the new and revolutionary hypergraph containers method, developed in papers of Balogh-Morris-Samotij and Saxton-Thomason.


2021 ◽  
Vol 2 (4) ◽  
pp. Article #S4PP3
Author(s):  
Rupert Li ◽  
Keyword(s):  

2021 ◽  
Vol 2 (1) ◽  
pp. Article #S2R4
Author(s):  
Krishna Menon ◽  
◽  
Anurag Singh ◽  
Keyword(s):  

2021 ◽  
Vol 866 ◽  
pp. 56-69
Author(s):  
James D. Currie ◽  
Lucas Mol
Keyword(s):  

2021 ◽  
Vol vol. 22 no. 2, Permutation... (Special issues) ◽  
Author(s):  
Neal Madras ◽  
Justin M. Troyka

We introduce a new boundedness condition for affine permutations, motivated by the fruitful concept of periodic boundary conditions in statistical physics. We study pattern avoidance in bounded affine permutations. In particular, we show that if $\tau$ is one of the finite increasing oscillations, then every $\tau$-avoiding affine permutation satisfies the boundedness condition. We also explore the enumeration of pattern-avoiding affine permutations that can be decomposed into blocks, using analytic methods to relate their exact and asymptotic enumeration to that of the underlying ordinary permutations. Finally, we perform exact and asymptotic enumeration of the set of all bounded affine permutations of size $n$. A companion paper will focus on avoidance of monotone decreasing patterns in bounded affine permutations. Comment: 35 pages


2020 ◽  
Vol 22 ◽  
Author(s):  
Pranav Chinmay

There is no formula for general t-stack sortable permutations. Thus, we attempt to study them by establishing lower and upper bounds. Permutations that avoid certain pattern sets provide natural lower bounds. This paper presents a recurrence relation that counts the number of permutations that avoid the set (23451,24351,32451,34251,42351,43251). This establishes a lower bound on 3-stack sortable permutations. Additionally, the proof generalizes to provide lower bounds for all t-stack sortable permutations.


2020 ◽  
Vol 24 (2) ◽  
pp. 337-361 ◽  
Author(s):  
Jonathan S. Bloom ◽  
Bruce E. Sagan

Sign in / Sign up

Export Citation Format

Share Document