vector derivative
Recently Published Documents


TOTAL DOCUMENTS

8
(FIVE YEARS 1)

H-INDEX

3
(FIVE YEARS 0)

Mathematics ◽  
2021 ◽  
Vol 9 (18) ◽  
pp. 2178
Author(s):  
Ivano Colombaro ◽  
Josep Font-Segura ◽  
Alfonso Martinez

In this paper, we review two related aspects of field theory: the modeling of the fields by means of exterior algebra and calculus, and the derivation of the field dynamics, i.e., the Euler–Lagrange equations, by means of the stationary action principle. In contrast to the usual tensorial derivation of these equations for field theories, that gives separate equations for the field components, two related coordinate-free forms of the Euler–Lagrange equations are derived. These alternative forms of the equations, reminiscent of the formulae of vector calculus, are expressed in terms of vector derivatives of the Lagrangian density. The first form is valid for a generic Lagrangian density that only depends on the first-order derivatives of the field. The second form, expressed in exterior algebra notation, is specific to the case when the Lagrangian density is a function of the exterior and interior derivatives of the multivector field. As an application, a Lagrangian density for generalized electromagnetic multivector fields of arbitrary grade is postulated and shown to have, by taking the vector derivative of the Lagrangian density, the generalized Maxwell equations as Euler–Lagrange equations.


Author(s):  
R L Ariany ◽  
T T Widiastuti A ◽  
E Farlina ◽  
T K Rachmawati ◽  
J Juariah
Keyword(s):  

Author(s):  
Jie Yuan ◽  
Fadi El-Haddad ◽  
Loic Salles ◽  
Chian Wong

This work presents an assessment of classical and state of the art reduced order modeling (ROM) techniques to enhance the computational efficiency for dynamic analysis of jointed structures with local contact nonlinearities. These ROM methods include classical free interface method (Rubin method, MacNeal method), fixed interface method Craig-Bampton (CB), Dual Craig-Bampton (DCB) method and also recently developed joint interface mode (JIM) and trial vector derivative (TVD) approaches. A finite element (FE) jointed beam model is considered as the test case taking into account two different setups: one with a linearized spring joint and the other with a nonlinear macroslip contact friction joint. Using these ROM techniques, the accuracy of dynamic behaviors and their computational expense are compared separately. We also studied the effect of excitation levels, joint region size, and number of modes on the performance of these ROM methods.


Author(s):  
Jie Yuan ◽  
Fadi El-Haddad ◽  
Loic Salles ◽  
Chian Wong

This work presents an assessment of classical and state of the art reduced order modelling (ROM) techniques to enhance the computational efficiency for dynamic analysis of jointed structures with local contact nonlinearities. These ROM methods include classical free interface method (Rubin method, MacNeal method), fixed interface method (Craig-Bampton), Dual Craig-Bampton (DCB) method and also recently developed joint interface mode (JIM) and trial vector derivative (TVD) approaches. A finite element jointed beam model is considered as the test case taking into account two different setups: one with a linearized spring joint and the other with a nonlinear macro-slip contact friction joint. Using these ROM techniques, the accuracy of dynamic behaviors and their computational expense are compared separately. We also studied the effect of excitation levels, joint region size and number of modes on the performance of these ROM methods.


2013 ◽  
Vol 79 (5) ◽  
pp. 735-738
Author(s):  
D. P. RESENDES

AbstractGeometric algebra (GA) is a recent broad mathematical framework incorporating synthetic and coordinate geometry, complex variables, quarternions, vector analysis, matrix algebra, spinors, tensors, and differential forms. It has been claimed to be a unified language for physics. GA is presented in the context of the Maxwell-Plasma system. In this formalism the divergence and curl differential operators are united in a single vector derivative, which is invertible, in the form of a first-order Green function. The four Maxwell equations can be combined into a single equation (for homogeneous and constant media) or into two equations involving the invertible vector derivative for more complex media. GA is applied to simple examples to illustrate the compactness of the notation and coordinate-free computations.


Sign in / Sign up

Export Citation Format

Share Document