exterior algebra
Recently Published Documents


TOTAL DOCUMENTS

167
(FIVE YEARS 22)

H-INDEX

10
(FIVE YEARS 1)

2021 ◽  
Vol 6 (1) ◽  
pp. 20
Author(s):  
Guozeng Yang ◽  
Yonggang Li ◽  
Jing Wang ◽  
Huafei Sun

The Lieb concavity theorem, successfully solved in the Wigner–Yanase–Dyson conjecture, is an important application of matrix concave functions. Recently, the Thompson–Golden theorem, a corollary of the Lieb concavity theorem, was extended to deformed exponentials. Hence, it is worthwhile to study the Lieb concavity theorem for deformed exponentials. In this paper, the Pick function is used to obtain a generalization of the Lieb concavity theorem for deformed exponentials, and some corollaries associated with exterior algebra are obtained.


Author(s):  
Caglar Pala ◽  
Ertan Kok ◽  
Ozcan Sert ◽  
Muzaffer Adak

After summarizing the basic concepts for the exterior algebra, we first discuss the gauge structure of the bundle over base manifold for deciding the form of the gravitational sector of the total Lagrangian in any dimensions. Then we couple minimally a Dirac spinor field to our gravitational Lagrangian 2-form which is quadratic in the nonmetricity and both linear and quadratic in the curvature in two dimensions. Subsequently, we obtain field equations by varying the total Lagrangian with respect to the independent variables. Finally, we find some classes of solutions of the vacuum theory and then a solution of the Dirac equation in a specific background and analyze them.


Author(s):  
Hakan Cebeci

Abstract In this work, by employing the exterior algebra formalism, we study the matter coupling in Minimal Massive 3D Gravity (MMG) by first considering that the matter Lagrangian is connection-independent and then considering that the matter coupling is connection-dependent. The matter coupling in MMG has been previously investigated in the work \cite{arvanitakis_2} in tensorial notation where the matter Lagrangian is considered to be connection-independent. In the first part of the present paper, we revisit the connection-independent matter coupling by using the language of differential forms. We derive the MMG field equation and construct the related source 2-form. We also obtain the consistency relation within this formalism. Next, we examine the case where the matter Lagrangian is connection-dependent. In particular, we concentrate on the spinor-matter coupling and obtain the MMG field equation by explicitly constructing the source term. We also get the consistency relation that the source term should satisfy in order that spinor-matter coupled MMG equation be consistent.


2021 ◽  
Vol 2090 (1) ◽  
pp. 012050
Author(s):  
Ivano Colombaro ◽  
Josep Font-Segura ◽  
Alfonso Martinez

Abstract We present a derivation of a manifestly symmetric form of the stress-energy-momentum using the mathematical tools of exterior algebra and exterior calculus, bypassing the standard symmetrizations of the canonical tensor. In a generalized flat space-time with arbitrary time and space dimensions, the tensor is found by evaluating the invariance of the action to infinitesimal space-time translations, using Lagrangian densities that are linear combinations of dot products of multivector fields. An interesting coordinate-free expression is provided for the divergence of the tensor, in terms of the interior and exterior derivatives of the multivector fields that form the Lagrangian density. A generalized Leibniz rule, applied to the variation of action, allows to obtain a conservation law for the derived stress-energy-momentum tensor. We finally show an application to the generalized theory of electromagnetism.


Mathematics ◽  
2021 ◽  
Vol 9 (18) ◽  
pp. 2178
Author(s):  
Ivano Colombaro ◽  
Josep Font-Segura ◽  
Alfonso Martinez

In this paper, we review two related aspects of field theory: the modeling of the fields by means of exterior algebra and calculus, and the derivation of the field dynamics, i.e., the Euler–Lagrange equations, by means of the stationary action principle. In contrast to the usual tensorial derivation of these equations for field theories, that gives separate equations for the field components, two related coordinate-free forms of the Euler–Lagrange equations are derived. These alternative forms of the equations, reminiscent of the formulae of vector calculus, are expressed in terms of vector derivatives of the Lagrangian density. The first form is valid for a generic Lagrangian density that only depends on the first-order derivatives of the field. The second form, expressed in exterior algebra notation, is specific to the case when the Lagrangian density is a function of the exterior and interior derivatives of the multivector field. As an application, a Lagrangian density for generalized electromagnetic multivector fields of arbitrary grade is postulated and shown to have, by taking the vector derivative of the Lagrangian density, the generalized Maxwell equations as Euler–Lagrange equations.


2021 ◽  
Vol 17 (3) ◽  
pp. 1-44
Author(s):  
Daniel Lokshtanov ◽  
Andreas BjÖrklund ◽  
Saket Saurabh ◽  
Meirav Zehavi

Recently, Brand et al. [STOC 2018] gave a randomized mathcal O(4 k m ε -2 -time exponential-space algorithm to approximately compute the number of paths on k vertices in a graph G up to a multiplicative error of 1 ± ε based on exterior algebra. Prior to our work, this has been the state-of-the-art. In this article, we revisit the algorithm by Alon and Gutner [IWPEC 2009, TALG 2010], and obtain the following results: • We present a deterministic 4 k + O (√ k (log k +log 2 ε -1 )) m -time polynomial-space algorithm. This matches the running time of the best known deterministic polynomial-space algorithm for deciding whether a given graph G has a path on k vertices. • Additionally, we present a randomized 4 k +mathcal O(log k (log k +logε -1 )) m -time polynomial-space algorithm. Our algorithm is simple—we only make elementary use of the probabilistic method. Here, n and m are the number of vertices and the number of edges, respectively. Additionally, our approach extends to approximate counting of other patterns of small size (such as q -dimensional p -matchings).


Mathematics ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 723
Author(s):  
Yonggang Li ◽  
Jing Wang ◽  
Huafei Sun

The matrix eigenvalue is very important in matrix analysis, and it has been applied to matrix trace inequalities, such as the Lieb–Thirring–Araki theorem and Thompson–Golden theorem. In this manuscript, we obtain a matrix eigenvalue inequality by using the Stein–Hirschman operator interpolation inequality; then, according to the properties of exterior algebra and the Schur-convex function, we provide a new proof for the generalization of the Lieb–Thirring–Araki theorem and Furuta theorem.


Sign in / Sign up

Export Citation Format

Share Document