scholarly journals An Exterior Algebraic Derivation of the Euler–Lagrange Equations from the Principle of Stationary Action

Mathematics ◽  
2021 ◽  
Vol 9 (18) ◽  
pp. 2178
Author(s):  
Ivano Colombaro ◽  
Josep Font-Segura ◽  
Alfonso Martinez

In this paper, we review two related aspects of field theory: the modeling of the fields by means of exterior algebra and calculus, and the derivation of the field dynamics, i.e., the Euler–Lagrange equations, by means of the stationary action principle. In contrast to the usual tensorial derivation of these equations for field theories, that gives separate equations for the field components, two related coordinate-free forms of the Euler–Lagrange equations are derived. These alternative forms of the equations, reminiscent of the formulae of vector calculus, are expressed in terms of vector derivatives of the Lagrangian density. The first form is valid for a generic Lagrangian density that only depends on the first-order derivatives of the field. The second form, expressed in exterior algebra notation, is specific to the case when the Lagrangian density is a function of the exterior and interior derivatives of the multivector field. As an application, a Lagrangian density for generalized electromagnetic multivector fields of arbitrary grade is postulated and shown to have, by taking the vector derivative of the Lagrangian density, the generalized Maxwell equations as Euler–Lagrange equations.

The Euler-Lagrange equations corresponding to a Lagrange density which is a function of the metric tensor g ij and its first two derivatives together with the first derivative of a vector field ψ i are investigated. In general, the Euler-Lagrange equations obtained by variation of g ij are of fourth order in g ij and third order in ψ i . It is shown that in a four dimensional space the only Euler-Lagrange equations which are of second order in g ij and first order in ψ i are the Einstein field equations (with an energy-momentum term). Various conditions are obtained under which the Einstein-Maxwell field equations are then an inevitable consequence.


1983 ◽  
Vol 38 (12) ◽  
pp. 1293-1295
Author(s):  
D. Großer

Abstract A field theory which is based entirely on fermion fields is non-renormalizable if the kinetic energy contains only derivatives of first order and therefore higher derivatives have to be included. Such field theories may be useful for describing preons and their interaction. In this note we show that a spinor field which satisfies a higher order field equation with an arbitrary nonlinear selfinteraction can be written as a sum of fields which satisfy first order equations.


2010 ◽  
Vol 07 (08) ◽  
pp. 1413-1436 ◽  
Author(s):  
LUCA VITAGLIANO

We extend the geometric Hamilton–Jacobi formalism for Hamiltonian mechanics to higher-order field theories with regular Lagrangian density. We also investigate the dependence of the formalism on the Lagrangian density in the class of those yielding the same Euler–Lagrange equations.


Heisenberg & Pauli (1929) have shown how to quantize field theories derived from Lagrangians containing first-order derivatives of the field quantities. They showed their quantization to be Lorentz invariant. Fuchs (1939) subsequently showed that the quantized theory was in fact invariant under general transformations of co-ordinates. The present author in another paper has shown how the theory of Heisenberg & Pauli can be extended to field equations derived from higher order Lagrangians, i. e. Lagrangians containing higher deri­vatives than the first of the field quantities. In the present paper the general relativistic invariance of the higher order quantized theories is established, making use of the generalized Poisson brackets introduced by Weiss.


1970 ◽  
Vol 48 (20) ◽  
pp. 2423-2426 ◽  
Author(s):  
G. M. Levman

Although Maxwell's vacuum field equations are invariant under the so-called duality rotation, the usual Lagrangian density for the electromagnetic field, which is bilinear in the first derivatives of the electromagnetic potentials, does not exhibit that invariance. It is shown that if one takes the components of the electromagnetic field tensor as field variables then the most general Lorentz invariant Lagrangian density bilinear in the electromagnetic fields and their first derivatives is determined uniquely by the requirement of duality invariance. The ensuing field equations are identical with the iterated Maxwell equations.


2013 ◽  
Vol 79 (5) ◽  
pp. 735-738
Author(s):  
D. P. RESENDES

AbstractGeometric algebra (GA) is a recent broad mathematical framework incorporating synthetic and coordinate geometry, complex variables, quarternions, vector analysis, matrix algebra, spinors, tensors, and differential forms. It has been claimed to be a unified language for physics. GA is presented in the context of the Maxwell-Plasma system. In this formalism the divergence and curl differential operators are united in a single vector derivative, which is invertible, in the form of a first-order Green function. The four Maxwell equations can be combined into a single equation (for homogeneous and constant media) or into two equations involving the invertible vector derivative for more complex media. GA is applied to simple examples to illustrate the compactness of the notation and coordinate-free computations.


1981 ◽  
Vol 46 (2) ◽  
pp. 452-456
Author(s):  
Milan Šolc

The successive time derivatives of relative entropy and entropy production for a system with a reversible first-order reaction alternate in sign. It is proved that the relative entropy for reactions with an equilibrium constant smaller than or equal to one is completely monotonic in the whole definition interval, and for reactions with an equilibrium constant larger than one this function is completely monotonic at the beginning of the reaction and near to equilibrium.


2021 ◽  
Vol 111 (2) ◽  
Author(s):  
E. V. Ferapontov ◽  
M. V. Pavlov ◽  
Lingling Xue

AbstractWe investigate the integrability of Euler–Lagrange equations associated with 2D second-order Lagrangians of the form $$\begin{aligned} \int f(u_{xx},u_{xy},u_{yy})\ \mathrm{d}x\mathrm{d}y. \end{aligned}$$ ∫ f ( u xx , u xy , u yy ) d x d y . By deriving integrability conditions for the Lagrangian density f, examples of integrable Lagrangians expressible via elementary functions, Jacobi theta functions and dilogarithms are constructed. A link of second-order integrable Lagrangians to WDVV equations is established. Generalisations to 3D second-order integrable Lagrangians are also discussed.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Nishant Gupta ◽  
Nemani V. Suryanarayana

Abstract We construct classical theories for scalar fields in arbitrary Carroll spacetimes that are invariant under Carrollian diffeomorphisms and Weyl transformations. When the local symmetries are gauge fixed these theories become Carrollian conformal field theories. We show that generically there are at least two types of such theories: one in which only time derivatives of the fields appear and the other in which both space and time derivatives appear. A classification of such scalar field theories in three (and higher) dimensions up to two derivative order is provided. We show that only a special case of our theories arises in the ultra-relativistic limit of a covariant parent theory.


Sign in / Sign up

Export Citation Format

Share Document