triose phosphate utilisation
Recently Published Documents


TOTAL DOCUMENTS

2
(FIVE YEARS 0)

H-INDEX

2
(FIVE YEARS 0)

2005 ◽  
Vol 32 (7) ◽  
pp. 655 ◽  
Author(s):  
Bir Singh ◽  
Luke Haley ◽  
Jamie Nightengale ◽  
Won Hee Kang ◽  
Candace H. Haigler ◽  
...  

The aim of this study was to characterise the response of CO2 assimilation (A) of cotton (Gossypium hirsutum L.) to short- and long-term exposures to night chilling. We hypothesised that short-term exposures to night chilling would induce reductions in gs and, therefore, A during the following days, while growth of cotton plants for several weeks in cool night conditions would cause elevated leaf carbohydrate content, leading to the down-regulation of the capacity for A. Transferring warm-grown seedlings of wild type cotton, transgenic cotton with elevated sucrose-phosphate synthase activity (SPS+) that might produce and export more sucrose from the leaf, and a segregating null to cool nights (9°C minimum) for 1 or 2 d caused a small reduction in A (12%) and gs (21–50%) measured at 28°C. Internal CO2 did not change, suggesting some biochemical restriction of A along with a gs restriction. After 30 d, new leaves that developed in cool nights exhibited acclimation of A and partial acclimation of gs. Despite the elevated leaf carbohydrate content when plants were grown to maturity with night chilling, no reduction in A, gs, carboxylation capacity, electron transport capacity, or triose-phosphate utilisation capacity occurred. Instead, growth in cool nights tended to retard the diminishing of photosynthetic parameters and gs for aging stem and subtending leaves. However, elevated SPS activity did not affect any photosynthetic parameters. Therefore, when cotton that is well fertilised with nitrogen is grown with continuous night chilling, photosynthesis should not be negatively affected. However, an occasional exposure to cool nights could result in a small reduction in A and gs for leaves that have developed in warm night conditions.


1996 ◽  
Vol 23 (5) ◽  
pp. 623 ◽  
Author(s):  
KP Hogan ◽  
D Whitehead ◽  
J Kallarackal ◽  
JG Buwalda ◽  
J Meekings ◽  
...  

Radiata pine (Pinus radiata D.Don) and red beech (Nothofagus fusca (Hook. f.) Oerst.) were grown for over 1 year at elevated (ELEV, 64 Pa) and ambient (AMB, 38 Pa) CO2 partial pressure in open-top chambers. Springtime measurements of overwintering leaves showed that light- and CO2-saturated photosynthetic rates (Amax) of pine leaves were similar for the two treatments (AMB: 6.7 � 1.08 μmol m-2 s-1, mean � 1 s.e.; ELEV: 6.6 � 0.47) but, for beech leaves, Amax was greater for AMB plants (8.8 � 0.90 μmol m-2 s-1) than for ELEV plants (6.10 � 0.71). Summertime measurements of leaves grown that spring showed that for pine, Amax was similar in the two CO2 treatments (AMB 14.9 μmol m-2 s-1 � 0.80; ELEV: 13.5 � 1.9) while, for beech, Amax was higher in AMB plants (21.0 � 1.1) than in ELEV plants (17.2 � 1.9), although the difference was not statistically significant. These results indicate downregulation of photosynthetic capacity of beech but not pine. Vcmax did not differ between treatments within species, suggesting that there was no acclimation of rubisco activity. Triose phosphate utilisation limitation may have contributed to the downregulation of Amax in beech. For pine, photosynthesis at treatment CO2 partial pressures was greater in ELEV plants in both spring and summer. For beech measured at treatment CO2 partial pressures, photosynthesis was greater in ELEV plants in summer, but was similar between treatments in the springtime.


Sign in / Sign up

Export Citation Format

Share Document