rectangular packing
Recently Published Documents


TOTAL DOCUMENTS

62
(FIVE YEARS 6)

H-INDEX

12
(FIVE YEARS 1)

2021 ◽  
Vol 11 (1) ◽  
pp. 413
Author(s):  
Yi-Bo Li ◽  
Hong-Bao Sang ◽  
Xiang Xiong ◽  
Yu-Rou Li

This paper proposes the hybrid adaptive genetic algorithm (HAGA) as an improved method for solving the NP-hard two-dimensional rectangular packing problem to maximize the filling rate of a rectangular sheet. The packing sequence and rotation state are encoded in a two-stage approach, and the initial population is constructed from random generation by a combination of sorting rules. After using the sort-based method as an improved selection operator for the hybrid adaptive genetic algorithm, the crossover probability and mutation probability are adjusted adaptively according to the joint action of individual fitness from the local perspective and the global perspective of population evolution. The approach not only can obtain differential performance for individuals but also deals with the impact of dynamic changes on population evolution to quickly find a further improved solution. The heuristic placement algorithm decodes the rectangular packing sequence and addresses the two-dimensional rectangular packing problem through continuous iterative optimization. The computational results of a wide range of benchmark instances from zero-waste to non-zero-waste problems show that the HAGA outperforms those of two adaptive genetic algorithms from the related literature. Compared with some recent algorithms, this algorithm, which can be increased by up to 1.6604% for the average filling rate, has great significance for improving the quality of work in fields such as packing and cutting.


Author(s):  
Amandeep K. Virk ◽  
Kawaljeet Singh

Background: Metaheuristic algorithms are optimization algorithms capable of finding near-optimal solutions for real world problems. Rectangle Packing Problem is a widely used industrial problem in which a number of small rectangles are placed into a large rectangular sheet to maximize the total area usage of the rectangular sheet. Metaheuristics have been widely used to solve the Rectangle Packing Problem. Objective: A recent metaheuristic approach, Binary Flower Pollination Algorithm, has been used to solve for rectangle packing optimization problem and its performance has been assessed. Methods: A heuristic placement strategy has been used for rectangle placement. Then, the Binary Flower Pollination Algorithm searches the optimal placement order and optimal layout. Results: Benchmark datasets have been used for experimentation to test the efficacy of Binary Flower Pollination Algorithm on the basis of utilization factor and number of bins used. The simulation results obtained show that the Binary Flower Pollination Algorithm outperforms in comparison to the other well-known algorithms. Conclusion: BFPA gave superior results and outperformed the existing state-of-the-art algorithms in many instances. Thus, the potential of a new nature based metaheuristic technique has been discovered.


2019 ◽  
Vol 137 ◽  
pp. 106097 ◽  
Author(s):  
Mao Chen ◽  
Chao Wu ◽  
Xiangyang Tang ◽  
Xicheng Peng ◽  
Zhizhong Zeng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document