modular verification
Recently Published Documents


TOTAL DOCUMENTS

143
(FIVE YEARS 18)

H-INDEX

20
(FIVE YEARS 2)

2021 ◽  
Vol 5 (OOPSLA) ◽  
pp. 1-29
Author(s):  
Zhe Zhou ◽  
Robert Dickerson ◽  
Benjamin Delaware ◽  
Suresh Jagannathan

Programmers often leverage data structure libraries that provide useful and reusable abstractions. Modular verification of programs that make use of these libraries naturally rely on specifications that capture important properties about how the library expects these data structures to be accessed and manipulated. However, these specifications are often missing or incomplete, making it hard for clients to be confident they are using the library safely. When library source code is also unavailable, as is often the case, the challenge to infer meaningful specifications is further exacerbated. In this paper, we present a novel data-driven abductive inference mechanism that infers specifications for library methods sufficient to enable verification of the library's clients. Our technique combines a data-driven learning-based framework to postulate candidate specifications, along with SMT-provided counterexamples to refine these candidates, taking special care to prevent generating specifications that overfit to sampled tests. The resulting specifications form a minimal set of requirements on the behavior of library implementations that ensures safety of a particular client program. Our solution thus provides a new multi-abduction procedure for precise specification inference of data structure libraries guided by client-side verification tasks. Experimental results on a wide range of realistic OCaml data structure programs demonstrate the effectiveness of the approach.


Author(s):  
Christian Lidström ◽  
Dilian Gurov

AbstractWhen developing complex software and systems, contracts provide a means for controlling the complexity by dividing the responsibilities among the components of the system in a hierarchical fashion. In specific application areas, dedicated contract theories formalise the notion of contract and the operations on contracts in a manner that supports best the development of systems in that area. At the other end, contract meta-theories attempt to provide a systematic view on the various contract theories by axiomatising their desired properties. However, there exists a noticeable gap between the most well-known contract meta-theory of Benveniste et al. [5], which focuses on the design of embedded and cyber-physical systems, and the established way of using contracts when developing general software, following Meyer’s design-by-contract methodology [18]. At the core of this gap appears to be the notion of procedure: while it is a central unit of composition in software development, the meta-theory does not suggest an obvious way of treating procedures as components.In this paper, we provide a first step towards a contract theory that takes procedures as the basic building block, and is at the same time an instantiation of the meta-theory. To this end, we propose an abstract contract theory for sequential programming languages with procedures, based on denotational semantics. We show that, on the one hand, the specification of contracts of procedures in Hoare logic, and their procedure-modular verification, can be cast naturally in the framework of our abstract contract theory. On the other hand, we also show our contract theory to fulfil the axioms of the meta-theory. In this way, we give further evidence for the utility of the meta-theory, and prepare the ground for combining our instantiation with other, already existing instantiations.


Author(s):  
Stefan Bodenmüller ◽  
Gerhard Schellhorn ◽  
Martin Bitterlich ◽  
Wolfgang Reif

2021 ◽  
Vol 31 ◽  
Author(s):  
THOMAS VAN STRYDONCK ◽  
FRANK PIESSENS ◽  
DOMINIQUE DEVRIESE

Abstract Separation logic is a powerful program logic for the static modular verification of imperative programs. However, dynamic checking of separation logic contracts on the boundaries between verified and untrusted modules is hard because it requires one to enforce (among other things) that outcalls from a verified to an untrusted module do not access memory resources currently owned by the verified module. This paper proposes an approach to dynamic contract checking by relying on support for capabilities, a well-studied form of unforgeable memory pointers that enables fine-grained, efficient memory access control. More specifically, we rely on a form of capabilities called linear capabilities for which the hardware enforces that they cannot be copied. We formalize our approach as a fully abstract compiler from a statically verified source language to an unverified target language with support for linear capabilities. The key insight behind our compiler is that memory resources described by spatial separation logic predicates can be represented at run time by linear capabilities. The compiler is separation-logic-proof-directed: it uses the separation logic proof of the source program to determine how memory accesses in the source program should be compiled to linear capability accesses in the target program. The full abstraction property of the compiler essentially guarantees that compiled verified modules can interact with untrusted target language modules as if they were compiled from verified code as well. This article is an extended version of one that was presented at ICFP 2019 (Van Strydonck et al., 2019).


Author(s):  
Thomas Letan ◽  
Yann Régis-Gianas ◽  
Pierre Chifflier ◽  
Guillaume Hiet
Keyword(s):  

2020 ◽  
Vol 35 (6) ◽  
pp. 1382-1405
Author(s):  
Jun-Peng Zha ◽  
Xin-Yu Feng ◽  
Lei Qiao
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document