weak lebesgue space
Recently Published Documents


TOTAL DOCUMENTS

3
(FIVE YEARS 0)

H-INDEX

1
(FIVE YEARS 0)

2020 ◽  
Vol 8 (1) ◽  
pp. 363-381
Author(s):  
Ryota Kawasumi ◽  
Eiichi Nakai

Abstract We consider generalized weak Morrey spaces with variable growth condition on spaces of homogeneous type and characterize the pointwise multipliers from a generalized weak Morrey space to another one. The set of all pointwise multipliers from a weak Lebesgue space to another one is also a weak Lebesgue space. However, we point out that the weak Morrey spaces do not always have this property just as the Morrey spaces not always.



2017 ◽  
Vol 15 (1) ◽  
pp. 1283-1299 ◽  
Author(s):  
Guanghui Lu ◽  
Shuangping Tao

Abstract The main purpose of this paper is to prove that the boundedness of the commutator $\mathcal{M}_{\kappa,b}^{*} $ generated by the Littlewood-Paley operator $\mathcal{M}_{\kappa}^{*} $ and RBMO (μ) function on non-homogeneous metric measure spaces satisfying the upper doubling and the geometrically doubling conditions. Under the assumption that the kernel of $\mathcal{M}_{\kappa}^{*} $ satisfies a certain Hörmander-type condition, the authors prove that $\mathcal{M}_{\kappa,b}^{*} $ is bounded on Lebesgue spaces Lp(μ) for 1 < p < ∞, bounded from the space L log L(μ) to the weak Lebesgue space L1,∞(μ), and is bounded from the atomic Hardy spaces H1(μ) to the weak Lebesgue spaces L1,∞(μ).



2014 ◽  
Vol 2014 ◽  
pp. 1-8
Author(s):  
Yue Hu ◽  
Yueshan Wang

We prove that, under the conditionΩ∈Lipα, Marcinkiewicz integralμΩis bounded from weighted weak Hardy spaceWHwpRnto weighted weak Lebesgue spaceWLwpRnformaxn/n+1/2,n/n+α<p≤1, wherewbelongs to the Muckenhoupt weight class. We also give weaker smoothness condition assumed on Ω to imply the boundedness ofμΩfromWHw1ℝntoWLw1Rn.



Sign in / Sign up

Export Citation Format

Share Document