pectoral muscle detection
Recently Published Documents


TOTAL DOCUMENTS

10
(FIVE YEARS 2)

H-INDEX

4
(FIVE YEARS 0)

2021 ◽  
pp. 676-688
Author(s):  
Sarah Siham Fadhil ◽  
Faten Abed Ali Dawood

The main aim of the Computer-Aided Detection/Diagnosis system is to assist the radiologists in examining the digital mammograms. Digital mammogram is the most popular screening technique for early detection of breast cancer. One of the problems in breast mammogram analysis is the presence of pectoral muscles region with high intensity in the upper right or left side of most Media-Lateral Oblique views of mammogram images. Therefore, it is important to remove this pectoral muscle from the image for accurate diagnosis results. The proposed method consists of three main steps. In the first step, noise is reduced using Median filtering. In the second step, artifacts removal and breast region extraction are performed using Otsu method. Finally, the pectoral muscle is extracted and removed using the proposed Split Orientation Local Thresholding (SOLTH) algorithm. For this study, a total of 110 mammogram images from the Mini-Mias database (MIAS) were used to evaluate the proposed method’s performance. The experimental results of automatic pectoral muscle detection and removal were observed by radiologist and showed 90.9% accuracy of acceptable results.


2020 ◽  
Author(s):  
Young Jae Kim ◽  
Eun Young Yoo ◽  
Kwang Gi Kim

Abstract Background: The purpose of this study was to propose a deep learning-based method for automated detection of the pectoral muscle, in order to reduce misdetection in a computer-aided diagnosis (CAD) system for diagnosing breast cancer in mammography. This study also aimed to assess the performance of the deep learning method for pectoral muscle detection by comparing it to an image processing-based method using the random sample consensus (RANSAC) algorithm. Methods: Using the 322 images in the Mammographic Image Analysis Society (MIAS) database, the pectoral muscle detection model was trained with the U-Net architecture. Of the total data, 80% was allocated as training data and 20% was allocated as test data, and the performance of the deep learning model was tested by 5-fold cross validation. Results: The image processing-based method for pectoral muscle detection using RANSAC showed 92% detection accuracy. Using the 5-fold cross validation, the deep learning-based method showed a mean sensitivity of 95.55%, mean specificity of 99.88%, mean accuracy of 99.67%, and mean Dice similarity coefficient (DSC) of 95.88%. Conclusions: The proposed deep learning-based method of pectoral muscle detection performed better than an existing image processing-based method. In the future, by collecting data from various medical institutions and devices to further train the model and improve its reliability, we expect that this model could greatly reduce misdetection rates by CAD systems for breast cancer diagnosis.


Sign in / Sign up

Export Citation Format

Share Document