parallel visual pathways
Recently Published Documents


TOTAL DOCUMENTS

30
(FIVE YEARS 6)

H-INDEX

6
(FIVE YEARS 1)

2021 ◽  
Vol 118 (42) ◽  
pp. e2104343118
Author(s):  
Jianmin Su ◽  
Ubadah Sabbagh ◽  
Yanping Liang ◽  
Lucie Olejníková ◽  
Karen G. Dixon ◽  
...  

Information about features in the visual world is parsed by circuits in the retina and is then transmitted to the brain by distinct subtypes of retinal ganglion cells (RGCs). Axons from RGC subtypes are stratified in retinorecipient brain nuclei, such as the superior colliculus (SC), to provide a segregated relay of parallel and feature-specific visual streams. Here, we sought to identify the molecular mechanisms that direct the stereotyped laminar targeting of these axons. We focused on ipsilateral-projecting subtypes of RGCs (ipsiRGCs) whose axons target a deep SC sublamina. We identified an extracellular glycoprotein, Nephronectin (NPNT), whose expression is restricted to this ipsiRGC-targeted sublamina. SC-derived NPNT and integrin receptors expressed by ipsiRGCs are both required for the targeting of ipsiRGC axons to the deep sublamina of SC. Thus, a cell–extracellular matrix (ECM) recognition mechanism specifies precise laminar targeting of ipsiRGC axons and the assembly of eye-specific parallel visual pathways.


iScience ◽  
2020 ◽  
Vol 23 (10) ◽  
pp. 101590 ◽  
Author(s):  
Lorin Timaeus ◽  
Laura Geid ◽  
Gizem Sancer ◽  
Mathias F. Wernet ◽  
Thomas Hummel

Author(s):  
Lorin Timaeus ◽  
Laura Geid ◽  
Gizem Sancer ◽  
Mathias F. Wernet ◽  
Thomas Hummel

SummaryOne hallmark of the visual system is the strict retinotopic organization from the periphery towards the central brain, spanning multiple layers of synaptic integration. Recent Drosophila studies on the computation of distinct visual features have shown that retinotopic representation is often lost beyond the optic lobes, due to convergence of columnar neuron types onto optic glomeruli. Nevertheless, functional imaging revealed a spatially accurate representation of visual cues in the central complex (CX), raising the question how this is implemented on a circuit level. By characterizing the afferents to a specific visual glomerulus, the anterior optic tubercle (AOTU), we discovered a spatial segregation of topographic versus non-topographic projections from molecularly distinct classes of medulla projection neurons (medullo-tubercular, or MeTu neurons). Distinct classes of topographic versus non-topographic MeTus form parallel channels, terminating in separate AOTU domains. Both types then synapse onto separate matching topographic fields of tubercular-bulbar (TuBu) neurons which relay visual information towards the dendritic fields of central complex ring neurons in the bulb neuropil, where distinct bulb sectors correspond to a distinct ring domain in the ellipsoid body. Hence, peripheral topography is maintained due to stereotypic circuitry within each TuBu class, providing the structural basis for spatial representation of visual information in the central complex. Together with previous data showing rough topography of lobula projections to a different AOTU subunit, our results further highlight the AOTUs role as a prominent relay station for spatial information from the retina to the central brain.


Vision ◽  
2020 ◽  
Vol 4 (1) ◽  
pp. 19
Author(s):  
Brian K. Foutch ◽  
Carl J. Bassi

Eye dominance is often defined as a preference for the visual input of one eye to the other. Implicit in this definition is the dominant eye has better visual function. Several studies have investigated the effect of visual direction or defocus on ocular dominance, but there is less evidence connecting ocular dominance and monocular visual thresholds. We used the classic “hole in card” method to determine the dominant eye for 28 adult observers (11 males and 17 females). We then compared contrast thresholds between the dominant and non-dominant eyes using grating stimuli biased to be processed more strongly either by the magnocellular (MC) or parvocellular (PC) pathway. Using non-parametric mean rank tests, the dominant eye was more sensitive overall than the non-dominant eye to both stimuli (z = −2.54, p = 0.01). The dominant eye was also more sensitive to the PC-biased stimulus (z = −2.22, p = 0.03) but not the MC-biased stimulus (z = −1.16, p = 0.25). We discuss the clinical relevance of these results as well as the implications for parallel visual pathways.


Author(s):  
Alyssa N. Sanchez ◽  
Henry J. Alitto ◽  
W. Martin Usrey

2015 ◽  
Vol 1624 ◽  
pp. 71-77 ◽  
Author(s):  
Péter Kaposvári ◽  
Gergő Csete ◽  
Anna Bognár ◽  
Péter Csibri ◽  
Eszter Tóth ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document