chopper neurons
Recently Published Documents


TOTAL DOCUMENTS

6
(FIVE YEARS 0)

H-INDEX

5
(FIVE YEARS 0)

2005 ◽  
Vol 21 (5) ◽  
pp. 1236-1248 ◽  
Author(s):  
Antonio G. Paolini ◽  
Janine C. Clarey ◽  
Karina Needham ◽  
Graeme M. Clark

1999 ◽  
Vol 82 (3) ◽  
pp. 1097-1113 ◽  
Author(s):  
Ranjan Batra ◽  
Douglas C. Fitzpatrick

The ventral nucleus of the lateral lemniscus (VNLL) is a major auditory nucleus that sends a large projection to the inferior colliculus. Despite its prominence, the responses of neurons in the VNLL have not been extensively studied. Previous studies in nonecholocating species have used anesthesia, which is known to affect discharge patterns. In addition, there is disagreement about the proportion of neurons that are sensitive to binaural stimulation. This report examines the responses of neurons in the VNLL of the unanesthetized rabbit to monaural and binaural stimuli. Most neurons responded to contralateral tone bursts at their best frequency and had either sustained or phasic discharge patterns. A few neurons were only inhibited. Most sustained neurons were classified as short-latency sustained (SL-sustained), but a few were of long latency. Some SL-sustained neurons exhibited multiple peaks in their discharge pattern, i.e., they had a “chopper” discharge pattern, whereas other SL-sustained neurons did not exhibit this pattern. In ordinary chopper neurons, the multiple peaks corresponded to the evenly spaced action potentials of a regular discharge. In unusual chopper neurons, the action potential associated with a particular peak could fail to occur during any one presentation of the stimulus. Unusual chopper neurons had a relatively irregular discharge. Phasic neurons were of two types: onset and transient. Onset neurons typically responded with a single action potential at the onset of the tone, whereas transient neurons produced a burst of action potentials. Transient neurons were relatively rare. About half the neurons also were influenced by ipsilateral stimulation. Most binaurally influenced neurons were either sensitive to interaural temporal disparities (ITDs) or excited by contralateral stimulation and inhibited by ipsilateral stimulation. Neurons sensitive to ITDs were mostly of the onset type and were embedded in the fiber tract medial to the main part of the nucleus. Neurons inhibited by ipsilateral stimulation could be of the sustained or onset type. The sustained neurons were located on the periphery of the main nucleus as well as in the fiber tract. Most of the monaural neurons were in the main, high-density part of VNLL. The present results demonstrate that the VNLL contains neurons with a heterogeneous set of responses, and that many of the neurons are binaural.


1999 ◽  
Vol 81 (5) ◽  
pp. 2347-2359 ◽  
Author(s):  
Antonio G. Paolini ◽  
Graeme M. Clark

Intracellular responses of onset chopper neurons in the ventral cochlear nucleus to tones: evidence for dual-component processing. The ventral cochlear nucleus (VCN) contains a heterogeneous collection of cell types reflecting the multiple processing tasks undertaken by this nucleus. This in vivo study in the rat used intracellular recordings and dye filling to examine membrane potential changes and firing characteristics of onset chopper (OC) neurons to acoustic stimulation (50 ms pure tones, 5 ms r/f time). Stable impalements were made from 15 OC neurons, 7 identified as multipolar cells. Neurons responded to characteristic frequency (CF) tones with sustained depolarization below spike threshold. With increasing stimulus intensity, the depolarization during the initial 10 ms of the response became peaked, and with further increases in intensity the peak became narrower. Onset spikes were generated during this initial depolarization. Tones presented below CF resulted in a broadening of this initial depolarizing component with high stimulus intensities required to initiate onset spikes. This initial component was followed by a sustained depolarizing component lasting until stimulus cessation. The amplitude of the sustained depolarizing component was greatest when frequencies were presented at high intensities below CF resulting in increased action potential firing during this period when compared with comparable high intensities at CF. During the presentation of tones at or above the high-frequency edge of a cell’s response area, hyperpolarization was evident during the sustained component. The presence of hyperpolarization and the differences seen in the level of sustained depolarization during CF and off CF tones suggests that changes in membrane responsiveness between the initial and sustained components may be attributed to polysynaptic inhibitory mechanisms. The dual-component processing resulting from convergent auditory nerve excitation and polysynaptic inhibition enables OC neurons to respond in a unique fashion to intensity and frequency features contained within an acoustic stimulus.


Sign in / Sign up

Export Citation Format

Share Document