action potential firing
Recently Published Documents


TOTAL DOCUMENTS

367
(FIVE YEARS 114)

H-INDEX

46
(FIVE YEARS 6)

2021 ◽  
Author(s):  
Chad R Camp ◽  
Lindsey Shapiro ◽  
Anna Vlachos ◽  
Riley E Perszyk ◽  
Nima Shariatzadeh ◽  
...  

N-methyl-D-aspartate receptors (NMDARs) are excitatory glutamate-gated ion channels that are expressed throughout the central nervous system. NMDARs mediate calcium entry into cells, and are involved in a host of neurological functions, including neuronal development and maturation. The GluN2A subunit, encoded by the GRIN2A gene, has a slightly delayed expression pattern, with low transcript levels during embryonic development that peak in the early neonatal period. Given its unique expression pattern and ability to speed up the synaptic time course after incorporation into the postsynaptic density compared to other GluN2 subunits, the GluN2A subunit is well positioned to participate in synaptic maturation and circuit refinement. By using Grin2a knockout mice, we show that the loss of GluN2A signaling impacts parvalbumin-positive GABAergic interneuron development in the hippocampal CA1 subfield. Specifically, Grin2a knockout mice have 33% more parvalbumin-positive cells in CA1 compared to wild type controls, with no impact on cholecystokinin-positive cell density. By using immunohistochemical colocalization staining and electrophysiological recordings, we demonstrate that these excess parvalbumin cells do eventually incorporate into the hippocampal network and participate in phasic inhibition, although their presynaptic release probability may be dampened. Moreover, we show that although the morphology of Grin2a knockout parvalbumin-positive cells is unaffected, key measures of intrinsic excitability and action-potential firing properties show age-dependent alterations. Preadolescent (P20-25) parvalbumin-positive cells have an increased input resistance, longer membrane time constant, longer action-potential half-width, a lower current threshold for depolarization-induced block of action-potential firing, and a decrease in peak action-potential firing rate. Each of these electrophysiological measures becomes corrected in adulthood, reaching wild type levels, suggesting a delay of electrophysiological maturation. The circuit and behavioral implications of delayed parvalbumin-positive interneuron maturation are not known; however, we find that neonatal Grin2a knockout mice are more susceptible to lipopolysaccharide and febrile-induced seizures, consistent with a critical role for early GluN2A signaling in neuronal development and maintenance of excitatory-inhibitory balance. These results could provide insights into how loss-of-function GRIN2A human variants can generate an epileptic phenotype.


Cells ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3548
Author(s):  
Hao Yu ◽  
Xiaojie Liu ◽  
Bixuan Chen ◽  
Casey R. Vickstrom ◽  
Vladislav Friedman ◽  
...  

Parkinson’s disease (PD) is a chronic neurodegenerative disorder associated with dopamine neuron loss and motor dysfunction. Neuroprotective agents that prevent dopamine neuron death hold great promise for slowing the disease’s progression. The activation of cannabinoid (CB) receptors has shown neuroprotective effects in preclinical models of neurodegenerative disease, traumatic brain injury, and stroke, and may provide neuroprotection against PD. Here, we report that the selective CB2 agonist GW842166x exerted protective effects against the 6-hydroxydopamine (6-OHDA)-induced loss of dopamine neurons and its associated motor function deficits in mice, as shown by an improvement in balance beam walking, pole, grip strength, rotarod, and amphetamine-induced rotation tests. The neuroprotective effects of GW842166x were prevented by the CB2 receptor antagonist AM630, suggesting a CB2-dependent mechanism. To investigate potential mechanisms for the neuroprotective effects of GW842166x, we performed electrophysiological recordings from substantia nigra pars compacta (SNc) dopamine neurons in ex vivo midbrain slices prepared from drug-naïve mice. We found that the bath application of GW842166x led to a decrease in action potential firing, likely due to a decrease in hyperpolarization-activated currents (Ih) and a shift of the half-activation potential (V1/2) of Ih to a more hyperpolarized level. Taken together, the CB2 agonist GW842166x may reduce the vulnerability of dopamine neurons to 6-OHDA by decreasing the action potential firing of these neurons and the associated calcium load.


2021 ◽  
Vol 118 (51) ◽  
pp. e2110641118
Author(s):  
Anindya Ganguly ◽  
Avinash Chandel ◽  
Heather Turner ◽  
Shan Wang ◽  
Emily R. Liman ◽  
...  

Receptors for bitter, sugar, and other tastes have been identified in the fruit fly Drosophila melanogaster, while a broadly tuned receptor for the taste of acid has been elusive. Previous work showed that such a receptor was unlikely to be encoded by a gene within one of the two major families of taste receptors in Drosophila, the “gustatory receptors” and “ionotropic receptors.” Here, to identify the acid taste receptor, we tested the contributions of genes encoding proteins distantly related to the mammalian Otopertrin1 (OTOP1) proton channel that functions as a sour receptor in mice. RNA interference (RNAi) knockdown or mutation by CRISPR/Cas9 of one of the genes, Otopetrin-Like A (OtopLA), but not of the others (OtopLB or OtopLC) severely impaired the behavioral rejection to a sweet solution laced with high levels of HCl or carboxylic acids and greatly reduced acid-induced action potentials measured from taste hairs. An isoform of OtopLA that we isolated from the proboscis was sufficient to restore behavioral sensitivity and acid-induced action potential firing in OtopLA mutant flies. At lower concentrations, HCl was attractive to the flies, and this attraction was abolished in the OtopLA mutant. Cell type–specific rescue experiments showed that OtopLA functions in distinct subsets of gustatory receptor neurons for repulsion and attraction to high and low levels of protons, respectively. This work highlights a functional conservation of a sensory receptor in flies and mammals and shows that the same receptor can function in both appetitive and repulsive behaviors.


Cells ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 3106
Author(s):  
Syevda Tagirova Sirenko ◽  
Ihor Zahanich ◽  
Yue Li ◽  
Yevgeniya O. Lukyanenko ◽  
Alexey E. Lyashkov ◽  
...  

Spontaneous AP (action potential) firing of sinoatrial nodal cells (SANC) is critically dependent on protein kinase A (PKA) and Ca2+/calmodulin-dependent protein kinase II (CaMKII)-dependent protein phosphorylation, which are required for the generation of spontaneous, diastolic local Ca2+ releases (LCRs). Although phosphoprotein phosphatases (PP) regulate protein phosphorylation, the expression level of PPs and phosphatase inhibitors in SANC and the impact of phosphatase inhibition on the spontaneous LCRs and other players of the oscillatory coupled-clock system is unknown. Here, we show that rabbit SANC express both PP1, PP2A, and endogenous PP inhibitors I-1 (PPI-1), dopamine and cyclic adenosine 3′,5′-monophosphate (cAMP)-regulated phosphoprotein (DARPP-32), kinase C-enhanced PP1 inhibitor (KEPI). Application of Calyculin A, (CyA), a PPs inhibitor, to intact, freshly isolated single SANC: (1) significantly increased phospholamban (PLB) phosphorylation (by 2–3-fold) at both CaMKII-dependent Thr17 and PKA-dependent Ser16 sites, in a time and concentration dependent manner; (2) increased ryanodine receptor (RyR) phosphorylation at the Ser2809 site; (3) substantially increased sarcoplasmic reticulum (SR) Ca2+ load; (4) augmented L-type Ca2+ current amplitude; (5) augmented LCR’s characteristics and decreased LCR period in intact and permeabilized SANC, and (6) increased the spontaneous basal AP firing rate. In contrast, the selective PP2A inhibitor okadaic acid (100 nmol/L) had no significant effect on spontaneous AP firing, LCR parameters, or PLB phosphorylation. Application of purified PP1 to permeabilized SANC suppressed LCR, whereas purified PP2A had no effect on LCR characteristics. Our numerical model simulations demonstrated that PP inhibition increases AP firing rate via a coupled-clock mechanism, including respective increases in the SR Ca2+ pumping rate, L-type Ca2+ current, and Na+/Ca2+-exchanger current. Thus, PP1 and its endogenous inhibitors modulate the basal spontaneous firing rate of cardiac pacemaker cells by suppressing SR Ca2+ cycling protein phosphorylation, the SR Ca2+ load and LCRs, and L-type Ca2+ current.


Author(s):  
Jari M. Tuomi ◽  
Loryn J. Bohne ◽  
Tristan W. Dorey ◽  
Hailey J. Jansen ◽  
Yingjie Liu ◽  
...  

Background Ibrutinib and acalabrutinib are Bruton tyrosine kinase inhibitors used in the treatment of B‐cell lymphoproliferative disorders. Ibrutinib is associated with new‐onset atrial fibrillation. Cases of sinus bradycardia and sinus arrest have also been reported following ibrutinib treatment. Conversely, acalabrutinib is less arrhythmogenic. The basis for these different effects is unclear. Methods and Results The effects of ibrutinib and acalabrutinib on atrial electrophysiology were investigated in anesthetized mice using intracardiac electrophysiology, in isolated atrial preparations using high‐resolution optical mapping, and in isolated atrial and sinoatrial node (SAN) myocytes using patch‐clamping. Acute delivery of acalabrutinib did not affect atrial fibrillation susceptibility or other measures of atrial electrophysiology in mice in vivo. Optical mapping demonstrates that ibrutinib dose‐dependently impaired atrial and SAN conduction and slowed beating rate. Acalabrutinib had no effect on atrial and SAN conduction or beating rate. In isolated atrial myocytes, ibrutinib reduced action potential upstroke velocity and Na + current. In contrast, acalabrutinib had no effects on atrial myocyte upstroke velocity or Na + current. Both drugs increased action potential duration, but these effects were smaller for acalabrutinib compared with ibrutinib and occurred by different mechanisms. In SAN myocytes, ibrutinib impaired spontaneous action potential firing by inhibiting the delayed rectifier K + current, while acalabrutinib had no effects on SAN myocyte action potential firing. Conclusions Ibrutinib and acalabrutinib have distinct effects on atrial electrophysiology and ion channel function that provide insight into the basis for increased atrial fibrillation susceptibility and SAN dysfunction with ibrutinib, but not with acalabrutinib.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Harvey Perez ◽  
May F Abdallah ◽  
Jose I Chavira ◽  
Angelina S Norris ◽  
Martin T Egeland ◽  
...  

Ataxia Telangiectasia (A-T) and Ataxia with Ocular Apraxia Type 1 (AOA1) are devastating neurological disorders caused by null mutations in the genome stability genes, A-T mutated (ATM) and Aprataxin (APTX), respectively. Our mechanistic understanding and therapeutic repertoire for treating these disorders is severely lacking, in large part due to the failure of prior animal models with similar null mutations to recapitulate the characteristic loss of motor coordination (i.e., ataxia) and associated cerebellar defects. By increasing genotoxic stress through the insertion of null mutations in both the Atm (nonsense) and Aptx (knockout) genes in the same animal, we have generated a novel mouse model that for the first time develops a progressively severe ataxic phenotype associated with atrophy of the cerebellar molecular layer. We find biophysical properties of cerebellar Purkinje neurons are significantly perturbed (e.g., reduced membrane capacitance, lower action potential thresholds, etc.), while properties of synaptic inputs remain largely unchanged. These perturbations significantly alter Purkinje neuron neural activity, including a progressive reduction in spontaneous action potential firing frequency that correlates with both cerebellar atrophy and ataxia over the animal’s first year of life. Double mutant mice also exhibit a high predisposition to developing cancer (thymomas) and immune abnormalities (impaired early thymocyte development and T-cell maturation), symptoms characteristic of A-T. Lastly, by inserting a clinically relevant nonsense-type null mutation in Atm, we demonstrate that Small Molecule Read-Through (SMRT) compounds can restore ATM production, indicating their potential as a future A-T therapeutic.


Cells ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2686
Author(s):  
Gerrit C. Beekhof ◽  
Simona V. Gornati ◽  
Cathrin B. Canto ◽  
Avraham M. Libster ◽  
Martijn Schonewille ◽  
...  

Purkinje cells (PCs) in the cerebellar cortex can be divided into at least two main subpopulations: one subpopulation that prominently expresses ZebrinII (Z+), and shows a relatively low simple spike firing rate, and another that hardly expresses ZebrinII (Z–) and shows higher baseline firing rates. Likewise, the complex spike responses of PCs, which are evoked by climbing fiber inputs and thus reflect the activity of the inferior olive (IO), show the same dichotomy. However, it is not known whether the target neurons of PCs in the cerebellar nuclei (CN) maintain this bimodal distribution. Electrophysiological recordings in awake adult mice show that the rate of action potential firing of CN neurons that receive input from Z+ PCs was consistently lower than that of CN neurons innervated by Z– PCs. Similar in vivo recordings in juvenile and adolescent mice indicated that the firing frequency of CN neurons correlates to the ZebrinII identity of the PC afferents in adult, but not postnatal stages. Finally, the spontaneous action potential firing pattern of adult CN neurons recorded in vitro revealed no significant differences in intrinsic pacemaking activity between ZebrinII identities. Our findings indicate that all three main components of the olivocerebellar loop, i.e., PCs, IO neurons and CN neurons, operate at a higher rate in the Z– modules.


2021 ◽  
Author(s):  
Leslie K Kelley ◽  
Jason Middleton ◽  
Nicholas W. Gilpin ◽  
Savannah HM Lightfoot ◽  
Matthew N Hill

To reduce reliance on opioids for the treatment of pain in the clinic, ongoing work is testing the utility of cannabinoid drugs as a potential alternative for treatment of chronic pain and/or as a strategy for reducing opioid drug dosage and duration of treatment (i.e., so-called opioid-sparing effects). Previous preclinical work has shown robust anti-hyperalgesic effects of systemic THC and acute anti-hyperalgesic effects of vaporized THC. Here, we used a vapor inhalation model in rats to test chronic THC vapor inhalation effects on thermal nociception and mechanical sensitivity, as well as midbrain (i.e., periaqueductal gray [PAG]) neuronal function, in adult male rats with chronic inflammatory pain. We report that chronic THC vapor inhalation produces a robust anti-hyperalgesic effect in rats with chronic inflammatory pain, and that this effect persists 24 hours after cessation of THC exposure. We demonstrate that chronic THC vapor inhalation also modulates intrinsic and synaptic properties of ventrolateral PAG (vlPAG) neurons, including reductions in action potential firing rate and reductions in spontaneous inhibitory synaptic transmission, and that these effects occur specifically in neurons that respond to current input with a delayed firing phenotype. Finally, we show that the suppressive effect of the bath-applied mu-opioid receptor (MOR) agonist DAMGO on synaptic inhibition in the vlPAG is enhanced in slices taken from rats with a history of chronic THC vapor inhalation. Collectively, these data show that chronic THC vapor inhalation produces lasting attenuation of thermal hyperalgesia and reduces synaptic inhibition in the vlPAG of rats with chronic inflammatory pain.


2021 ◽  
Vol 17 (9) ◽  
pp. e1009371
Author(s):  
Christopher J. Knowlton ◽  
Tabea Ines Ziouziou ◽  
Niklas Hammer ◽  
Jochen Roeper ◽  
Carmen C. Canavier

Two subpopulations of midbrain dopamine (DA) neurons are known to have different dynamic firing ranges in vitro that correspond to distinct projection targets: the originally identified conventional DA neurons project to the dorsal striatum and the lateral shell of the nucleus accumbens, whereas an atypical DA population with higher maximum firing frequencies projects to prefrontal regions and other limbic regions including the medial shell of nucleus accumbens. Using a computational model, we show that previously identified differences in biophysical properties do not fully account for the larger dynamic range of the atypical population and predict that the major difference is that originally identified conventional cells have larger occupancy of voltage-gated sodium channels in a long-term inactivated state that recovers slowly; stronger sodium and potassium conductances during action potential firing are also predicted for the conventional compared to the atypical DA population. These differences in sodium channel gating imply that longer intervals between spikes are required in the conventional population for full recovery from long-term inactivation induced by the preceding spike, hence the lower maximum frequency. These same differences can also change the bifurcation structure to account for distinct modes of entry into depolarization block: abrupt versus gradual. The model predicted that in cells that have entered depolarization block, it is much more likely that an additional depolarization can evoke an action potential in conventional DA population. New experiments comparing lateral to medial shell projecting neurons confirmed this model prediction, with implications for differential synaptic integration in the two populations.


2021 ◽  
Author(s):  
Nikollas M. Benites ◽  
Beatriz Rodrigues ◽  
Carlos H. Silveira ◽  
Ricardo M. Leão

AbstractThe dorsal cochlear nucleus (DCN) in the auditory brainstem integrates auditory and somatosensory information. Mature fusiform neurons express two qualitative intrinsic states in equal proportions: quiet, with no spontaneous regular action potential firing, or active, with regular spontaneous action potential firing. However, how these firing states and other electrophysiological properties of fusiform neurons develop during early postnatal days to adulthood is not known. Thus, we recorded fusiform neurons from mice from P4 to P21 and analyzed their electrophysiological properties. In the pre-hearing phase (P4-P13), we found that fusiform neurons are mostly quiet, with the active state emerging after hearing onset at P14. Subthreshold properties present more variations before hearing onset, while action potential properties vary more after P14, developing bigger, shorter, and faster action potentials. Interestingly, the activity threshold is more depolarized in pre-hearing cells suggesting that persistent sodium current (INaP) increases its expression after hearing. In fact, INaP increases its expression after hearing, accordingly with the development of active neurons. Thus, we suggest that the post-hearing expression of INaP creates the active state of the fusiform neuron. At the same time, other changes refine the passive membrane properties and increase the speed of action potential firing of fusiform neurons.


Sign in / Sign up

Export Citation Format

Share Document