invariant rectangle
Recently Published Documents


TOTAL DOCUMENTS

2
(FIVE YEARS 1)

H-INDEX

0
(FIVE YEARS 0)

2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Tran Hong Thai ◽  
Nguyen Anh Dai ◽  
Pham Tuan Anh

<p style='text-indent:20px;'>In this paper, we study the boundedness and persistence of positive solution, existence of invariant rectangle, local and global behavior, and rate of convergence of positive solutions of the following systems of exponential difference equations</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \begin{align*} x_{n+1} = \dfrac{\alpha_1+\beta_1e^{-x_{n-1}}}{\gamma_1+y_n},\ y_{n+1} = \dfrac{\alpha_2+\beta_2e^{-y_{n-1}}}{\gamma_2+x_n},\\ x_{n+1} = \dfrac{\alpha_1+\beta_1e^{-y_{n-1}}}{\gamma_1+x_n},\ y_{n+1} = \dfrac{\alpha_2+\beta_2e^{-x_{n-1}}}{\gamma_2+y_n}, \end{align*} $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>where the parameters <inline-formula><tex-math id="M1">\begin{document}$ \alpha_i,\ \beta_i,\ \gamma_i $\end{document}</tex-math></inline-formula> for <inline-formula><tex-math id="M2">\begin{document}$ i \in \{1,2\} $\end{document}</tex-math></inline-formula> and the initial conditions <inline-formula><tex-math id="M3">\begin{document}$ x_{-1}, x_0, y_{-1}, y_0 $\end{document}</tex-math></inline-formula> are positive real numbers. Some numerical example are given to illustrate our theoretical results.</p>



2020 ◽  
Vol 2020 ◽  
pp. 1-24
Author(s):  
A. Q. Khan ◽  
H. M. Arshad ◽  
B. A. Younis ◽  
KH. I. Osman ◽  
Tarek F. Ibrahim ◽  
...  

We explore the boundedness and persistence, existence of an invariant rectangle, local dynamical properties about the unique positive fixed point, global dynamics by the discrete-time Lyapunov function, and the rate of convergence of some 2,3-type exponential systems of difference equations. Finally, theoretical results are numerically verified.



Sign in / Sign up

Export Citation Format

Share Document