dielectric continuum model
Recently Published Documents


TOTAL DOCUMENTS

45
(FIVE YEARS 4)

H-INDEX

16
(FIVE YEARS 0)

2020 ◽  
Vol 20 (7) ◽  
pp. 4444-4449
Author(s):  
Jeung Hun Park ◽  
Richard S. Kim ◽  
Se-Jeong Park ◽  
Choong-Heui Chung

We report the systematic investigation of the surface optical phonon modes in Au-catalyzed GaAs nanowires grown on an Au pre-patterned GaAs(111)B substrate using μ-Raman spectroscopy. We employed electron-beam dose rate as a control parameter during the substrate patterning step for adjusting the nanowire base diameter and coverage, which are independent from the nanowire growth conditions. We have experimentally studied the effect of the fill factor and average diameter on the surface optical phonon modes and explained the red-shift and broadening of the surface optical phonon frequencies by employing the dielectric continuum model. The surface optical phonon mode shift is exhibited to be sensitive to fill factor, rather than base diameter. The decrease in the average diameter from 280 nm to 180 nm results in the asymmetric broadening and red-shift of the surface optical phonon frequency (~1.83 cm−1) but the theoretical calculation from the isolated single nanowire-based dielectric continuum model cannot solely explain the behaviors of the surface optical phonon mode. In contrast, the change in the fill factor from 0.01 to 0.83 results in a shift of the surface optical phonon frequency (~6.5 cm−1) from the GaAs bulk value. The red-shift and asymmetric broadening of the surface optical phonons, in an agreement with the Maxwell-Garnett approximation, are consequences of dipolar interaction of randomly aligned neighboring nanowires and the polar nature of GaAs nanowire bundles. This work suggests the pre-patterning parameter dependent surface optical phonon characteristics of GaAs nanowire bundles which are of great importance in the nondestructive characterization of low-dimensional opto-electronic materials and devices.


2012 ◽  
Vol 34 (2) ◽  
pp. B107-B126 ◽  
Author(s):  
Dexuan Xie ◽  
Yi Jiang ◽  
Peter Brune ◽  
L. Ridgway Scott

2011 ◽  
Vol 22 (2) ◽  
pp. 427-432 ◽  
Author(s):  
M. V. Basilevsky ◽  
E. A. Nikitina ◽  
F. V. Grigoriev ◽  
A. A. Bagaturyants ◽  
M. V. Alfimov

Sign in / Sign up

Export Citation Format

Share Document