generalized associahedra
Recently Published Documents


TOTAL DOCUMENTS

17
(FIVE YEARS 4)

H-INDEX

8
(FIVE YEARS 1)

2021 ◽  
Vol 4 (5) ◽  
pp. 757-775
Author(s):  
Dennis Jahn ◽  
Robert Löwe ◽  
Christian Stump

2020 ◽  
Vol 2020 (10) ◽  
Author(s):  
Song He ◽  
Zhenjie Li ◽  
Prashanth Raman ◽  
Chi Zhang

Abstract Stringy canonical forms are a class of integrals that provide α′-deformations of the canonical form of any polytopes. For generalized associahedra of finite-type cluster algebras, there exist completely rigid stringy integrals, whose configuration spaces are the so-called binary geometries, and for classical types are associated with (generalized) scattering of particles and strings. In this paper, we propose a large class of rigid stringy canonical forms for another class of polytopes, generalized permutohedra, which also include associahedra and cyclohedra as special cases (type An and Bn generalized associahedra). Remarkably, we find that the configuration spaces of such integrals are also binary geometries, which were suspected to exist for generalized associahedra only. For any generalized permutohedron that can be written as Minkowski sum of coordinate simplices, we show that its rigid stringy integral factorizes into products of lower integrals for massless poles at finite α′, and the configuration space is binary although the u equations take a more general form than those “perfect” ones for cluster cases. Moreover, we provide an infinite class of examples obtained by degenerations of type An and Bn integrals, which have perfect u equations as well. Our results provide yet another family of generalizations of the usual string integral and moduli space, whose physical interpretations remain to be explored.


2020 ◽  
Vol DMTCS Proceedings, 28th... ◽  
Author(s):  
Thibault Manneville ◽  
Vincent Pilaud

International audience Graph associahedra are polytopes realizing the nested complex N(G) on connected subgraphs of a graph G.While all known explicit constructions produce polytopes with the same normal fan, the great variety of fan realizationsof classical associahedra and the analogy between finite type cluster complexes and nested complexes incitedus to transpose S. Fomin and A. Zelevinsky's construction of compatibility fans for generalized associahedra (2003)to graph associahedra. Using a compatibility degree, we construct one fan realization of N(G) for each of its facets.Specifying G to paths and cycles, we recover a construction by F. Santos for classical associahedra (2011) and extendF. Chapoton, S. Fomin and A. Zelevinsky's construction (2002) for type B and C generalized associahedra.


2019 ◽  
Vol 72 (4) ◽  
pp. 867-899
Author(s):  
Joël Gay ◽  
Vincent Pilaud

AbstractWe define a natural lattice structure on all subsets of a finite root system that extends the weak order on the elements of the corresponding Coxeter group. For crystallographic root systems, we show that the subposet of this lattice induced by antisymmetric closed subsets of roots is again a lattice. We then study further subposets of this lattice that naturally correspond to the elements, the intervals, and the faces of the permutahedron and the generalized associahedra of the corresponding Weyl group. These results extend to arbitrary finite crystallographic root systems the recent results of G. Chatel, V. Pilaud, and V. Pons on the weak order on posets and its induced subposets.


2015 ◽  
Vol 143 (6) ◽  
pp. 2623-2636 ◽  
Author(s):  
Vincent Pilaud ◽  
Christian Stump

2015 ◽  
Vol DMTCS Proceedings, 27th... (Proceedings) ◽  
Author(s):  
C. Ceballos ◽  
T. Manneville ◽  
V. Pilaud ◽  
L. Pournin

International audience The $n$-dimensional associahedron is a polytope whose vertices correspond to triangulations of a convex $(n + 3)$-gon and whose edges are flips between them. It was recently shown that the diameter of this polytope is $2n - 4$ as soon as $n > 9$. We study the diameters of the graphs of relevant generalizations of the associahedron: on the one hand the generalized associahedra arising from cluster algebras, and on the other hand the graph associahedra and nestohedra. Related to the diameter, we investigate the non-leaving-face property for these polytopes, which asserts that every geodesic connecting two vertices in the graph of the polytope stays in the minimal face containing both. L’associaèdre de dimension $n$ est un polytope dont les sommets correspondent aux triangulations d’un $(n + 3)$-gone convexe et dont les arêtes sont les échanges entre ces triangulations. Il a été récemment démontré que le diamètre de ce polytope est $2n - 4$ dès que $n > 9$. Nous étudions les diamètres des graphes de certaines généralisations de l’associaèdre : d’une part les associaèdres généralisés provenant des algèbres amassées, et d’autre part les associaèdres de graphes et les nestoèdres. En lien avec le diamètre, nous étudions si toutes les géodésiques entre deux sommets de ces polytopes restent dans la plus petite face les contenant.


2012 ◽  
Vol DMTCS Proceedings vol. AR,... (Proceedings) ◽  
Author(s):  
Vincent Pilaud ◽  
Christian Stump

International audience We generalize the brick polytope of V. Pilaud and F. Santos to spherical subword complexes for finite Coxeter groups. This construction provides polytopal realizations for a certain class of subword complexes containing all cluster complexes of finite types. For the latter, the brick polytopes turn out to coincide with the known realizations of generalized associahedra, thus opening new perspectives on these constructions. This new approach yields in particular the vertex description and a relevant Minkowski sum decomposition of generalized associahedra.


2011 ◽  
Vol 226 (1) ◽  
pp. 608-640 ◽  
Author(s):  
Christophe Hohlweg ◽  
Carsten E.M.C. Lange ◽  
Hugh Thomas

Sign in / Sign up

Export Citation Format

Share Document