minkowski sum
Recently Published Documents


TOTAL DOCUMENTS

137
(FIVE YEARS 26)

H-INDEX

14
(FIVE YEARS 2)

Author(s):  
Peng Zhang ◽  
Qingjun Xian ◽  
Junqi Chen

2021 ◽  
Vol 9 ◽  
Author(s):  
Shibing Zhang ◽  
Zhen Sun ◽  
Junli Zhou ◽  
Bo Yang ◽  
Jiuchang Zhang ◽  
...  

Interfacial transition zone (ITZ) is an important component of a concrete-like material. Accurately simulating the ITZ's characteristics of the concrete-like materials is a difficult process in numerical simulation. This article proposed a random three-phase mesostructural modeling method using the incorporation of random aggregate generation, Minkowski sum theory, and polygon union techniques. It was found that this method can better simulate the mesostructure and ITZ characteristics of concrete-like materials. By using this method, a random three-phase mesostructural model had been built for conducting a finite element analysis to investigate the effective permeability parameters of concrete. A good agreement between numerical and experimental results indicates the feasibility of this method in the concrete-like material analysis.


2021 ◽  
Vol 2011 (1) ◽  
pp. 012037
Author(s):  
Peng Zhang ◽  
Junqi Chen ◽  
Qingjun Xian
Keyword(s):  

2021 ◽  
pp. 2140009
Author(s):  
Gregory S. Chirikjian ◽  
Bernard Shiffman

General results on convex bodies are reviewed and used to derive an exact closed-form parametric formula for the Minkowski sum boundary of [Formula: see text] arbitrary ellipsoids in [Formula: see text]-dimensional Euclidean space. Expressions for the principal curvatures of these Minkowski sums are also derived. These results are then used to obtain upper and lower volume bounds for the Minkowski sum of ellipsoids in terms of their defining matrices; the lower bounds are sharper than the Brunn–Minkowski inequality. A reverse isoperimetric inequality for convex bodies is also given.


2021 ◽  
Vol 66 (1) ◽  
pp. 123-126
Author(s):  
Mircea D. Voisei

The goal of this note is to present a new shorter proof for the maximal monotonicity of the Minkowski sum of two maximal monotone multi-valued operators defined in a reflexive Banach space under the classical interiority condition involving their domains.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Nima Arkani-Hamed ◽  
Song He ◽  
Thomas Lam

Abstract Canonical forms of positive geometries play an important role in revealing hidden structures of scattering amplitudes, from amplituhedra to associahedra. In this paper, we introduce “stringy canonical forms”, which provide a natural definition and extension of canonical forms for general polytopes, deformed by a parameter α′. They are defined by real or complex integrals regulated with polynomials with exponents, and are meromorphic functions of the exponents, sharing various properties of string amplitudes. As α′→ 0, they reduce to the usual canonical form of a polytope given by the Minkowski sum of the Newton polytopes of the regulating polynomials, or equivalently the volume of the dual of this polytope, naturally determined by tropical functions. At finite α′, they have simple poles corresponding to the facets of the polytope, with the residue on the pole given by the stringy canonical form of the facet. There is the remarkable connection between the α′→ 0 limit of tree-level string amplitudes, and scattering equations that appear when studying the α′→ ∞ limit. We show that there is a simple conceptual understanding of this phenomenon for any stringy canonical form: the saddle-point equations provide a diffeomorphism from the integration domain to the interior of the polytope, and thus the canonical form can be obtained as a pushforward via summing over saddle points. When the stringy canonical form is applied to the ABHY associahedron in kinematic space, it produces the usual Koba-Nielsen string integral, giving a direct path from particle to string amplitudes without an a priori reference to the string worldsheet. We also discuss a number of other examples, including stringy canonical forms for finite-type cluster algebras (with type A corresponding to usual string amplitudes), and other natural integrals over the positive Grassmannian.


2020 ◽  
Vol 2020 (11) ◽  
Author(s):  
Marieke van Beest ◽  
Antoine Bourget ◽  
Julius Eckhard ◽  
Sakura Schäfer-Nameki

Abstract We derive the structure of the Higgs branch of 5d superconformal field theories or gauge theories from their realization as a generalized toric polygon (or dot diagram). This approach is motivated by a dual, tropical curve decomposition of the (p, q) 5-brane-web system. We define an edge coloring, which provides a decomposition of the generalized toric polygon into a refined Minkowski sum of sub-polygons, from which we compute the magnetic quiver. The Coulomb branch of the magnetic quiver is then conjecturally identified with the 5d Higgs branch. Furthermore, from partial resolutions, we identify the symplectic leaves of the Higgs branch and thereby the entire foliation structure. In the case of strictly toric polygons, this approach reduces to the description of deformations of the Calabi-Yau singularities in terms of Minkowski sums.


Author(s):  
Daniele Agostini ◽  
Türkü Özlüm Çelik ◽  
Julia Struwe ◽  
Bernd Sturmfels

Abstract A theta surface in affine 3-space is the zero set of a Riemann theta function in genus 3. This includes surfaces arising from special plane quartics that are singular or reducible. Lie and Poincaré showed that any analytic surface that is the Minkowski sum of two space curves in two different ways is a theta surface. The four space curves that generate such a double translation structure are parametrized by abelian integrals, so they are usually not algebraic. This paper offers a new view on this classical topic through the lens of computation. We present practical tools for passing between quartic curves and their theta surfaces, and we develop the numerical algebraic geometry of degenerations of theta functions.


2020 ◽  
Vol 2020 (10) ◽  
Author(s):  
Song He ◽  
Zhenjie Li ◽  
Prashanth Raman ◽  
Chi Zhang

Abstract Stringy canonical forms are a class of integrals that provide α′-deformations of the canonical form of any polytopes. For generalized associahedra of finite-type cluster algebras, there exist completely rigid stringy integrals, whose configuration spaces are the so-called binary geometries, and for classical types are associated with (generalized) scattering of particles and strings. In this paper, we propose a large class of rigid stringy canonical forms for another class of polytopes, generalized permutohedra, which also include associahedra and cyclohedra as special cases (type An and Bn generalized associahedra). Remarkably, we find that the configuration spaces of such integrals are also binary geometries, which were suspected to exist for generalized associahedra only. For any generalized permutohedron that can be written as Minkowski sum of coordinate simplices, we show that its rigid stringy integral factorizes into products of lower integrals for massless poles at finite α′, and the configuration space is binary although the u equations take a more general form than those “perfect” ones for cluster cases. Moreover, we provide an infinite class of examples obtained by degenerations of type An and Bn integrals, which have perfect u equations as well. Our results provide yet another family of generalizations of the usual string integral and moduli space, whose physical interpretations remain to be explored.


Sign in / Sign up

Export Citation Format

Share Document