hybrid power source
Recently Published Documents


TOTAL DOCUMENTS

125
(FIVE YEARS 21)

H-INDEX

24
(FIVE YEARS 4)

2021 ◽  
Author(s):  
Debswarup Rath ◽  
Sanjeeb Kar ◽  
Akshaya Kumar Patra ◽  
Satyaprasad Mohapatra

2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
J. I. Corcau ◽  
L. Dinca

HAPS (high-altitude pseudosatellites) are flight machines, airplane type, generally without pilot which fly in a definite zone at 18-22 km altitude, providing communication and surveillance services. These flight machines do not leave the atmosphere, and their purpose is to maintain a constant flight level for as long time as possible in the interest zone (e.g., five years) to fulfill their mission. HAPS energetic system proposed in this paper has to feed the electric propulsion system of HAPS (12.5 kW) and also to feed on-board equipment (navigation, data links, scientific equipment, etc.). On-board energy sources have to maintain HAPS in the interest zone for long periods. For this reason, it is used in the present solar power sources. A part of the generated energy is consumed on board; the rest is stored daytime and consumed nighttime. So, the system is provided with energy generation systems and also with storage and management systems. HAPS energetic system is a hybrid type, with two or more power sources. In this case, power sources are photovoltaic panels are used daytime and fuel cell are used nighttime, and also, a battery and/or a supercapacitor is used in transition periods from day to night and in peak load periods. In this paper, an electric power system used nighttime is designed and analysed. In this situation, the primary power source is the fuel cell and the secondary power sources are battery and/or supercapacitor. There are used numerical simulations models, developed in Matlab/Simulink, for all hybrid power source components: fuel cell stack, battery system, supercapacitors, conversion system, and fuzzy logic power management system. For a part of these components, there are used existing simulation models in Matlab/Simulink, adapted to these simulation requirements, and for others, there are designed and implemented simulation schemes according to these simulation requirements. An important component of the hybrid power source is the power conversion system which adapts the power sources parameters to consumer input requirements. A fuzzy logic power management system is designed.


Author(s):  
Adriano Ceschia ◽  
Toufik Azib ◽  
Olivier Bethoux ◽  
Francisco Alves

This paper presents an optimal design methodology enabling to exhibit the best parameters of a complex energy system combing several components and their related control parts. It is based on a particle swarm optimization technique for component sizing, combined with optimal control to consider energy management constraints. This approximate resolution is valuable since it allows to achieve a robust and effective optimal design using low computational resources: it enables to tackle large search spaces in engineering time constraints. The selected use case is a fuel cell/battery hybrid power source based on a power-split parallel architecture. Its performance index is defined as the fuel consumption. Regarding this objective, the drivetrain components size and the control parameters values are both strongly coupled and physically constrained. In this context, the methodology makes a tradeoff between component sizing and energy saving. Simulation results show the relevance and robustness of this approach regarding different driving cycles and operating conditions. It validates the replicability of this method to other optimization problems in the field of energy optimization. A comprehensive review of the simulation tests highlights the present limits of this optimization and provides new perspectives for future works.


Sign in / Sign up

Export Citation Format

Share Document