markov fluid queues
Recently Published Documents


TOTAL DOCUMENTS

7
(FIVE YEARS 1)

H-INDEX

4
(FIVE YEARS 1)

2017 ◽  
Vol 31 (3) ◽  
pp. 265-283 ◽  
Author(s):  
Ewan Jacov Cahen ◽  
Michel Mandjes ◽  
Bert Zwart

This paper focuses on the evaluation of the probability that both components of a bivariate stochastic process ever simultaneously exceed some large level; a leading example is that of two Markov fluid queues driven by the same background process ever reaching the set (u, ∞)×(u, ∞), for u>0. Exact analysis being prohibitive, we resort to asymptotic techniques and efficient simulation, focusing on large values of u. The first contribution concerns various expressions for the decay rate of the probability of interest, which are valid under Gärtner–Ellis-type conditions. The second contribution is an importance-sampling-based rare-event simulation technique for the bivariate Markov modulated fluid model, which is capable of asymptotically efficiently estimating the probability of interest; the efficiency of this procedure is assessed in a series of numerical experiments.


2004 ◽  
Vol 41 (02) ◽  
pp. 557-569 ◽  
Author(s):  
Nail Akar ◽  
Khosrow Sohraby

In this paper, we study Markov fluid queues where the net fluid rate to a single-buffer system varies with respect to the state of an underlying continuous-time Markov chain. We present a novel algorithmic approach to solve numerically for the steady-state solution of such queues. Using this approach, both infinite- and finite-buffer cases are studied. We show that the solution of the infinite-buffer case is reduced to the solution of a generalized spectral divide-and-conquer (SDC) problem applied on a certain matrix pencil. Moreover, this SDC problem does not require the individual computation of any eigenvalues and eigenvectors. Via the solution for the SDC problem, a matrix-exponential representation for the steady-state queue-length distribution is obtained. The finite-buffer case, on the other hand, requires a similar but different decomposition, the so-called additive decomposition (AD). Using the AD, we obtain a modified matrix-exponential representation for the steady-state queue-length distribution. The proposed approach for the finite-buffer case is shown not to have the numerical stability problems reported in the literature.


2004 ◽  
Vol 41 (2) ◽  
pp. 557-569 ◽  
Author(s):  
Nail Akar ◽  
Khosrow Sohraby

In this paper, we study Markov fluid queues where the net fluid rate to a single-buffer system varies with respect to the state of an underlying continuous-time Markov chain. We present a novel algorithmic approach to solve numerically for the steady-state solution of such queues. Using this approach, both infinite- and finite-buffer cases are studied. We show that the solution of the infinite-buffer case is reduced to the solution of a generalized spectral divide-and-conquer (SDC) problem applied on a certain matrix pencil. Moreover, this SDC problem does not require the individual computation of any eigenvalues and eigenvectors. Via the solution for the SDC problem, a matrix-exponential representation for the steady-state queue-length distribution is obtained. The finite-buffer case, on the other hand, requires a similar but different decomposition, the so-called additive decomposition (AD). Using the AD, we obtain a modified matrix-exponential representation for the steady-state queue-length distribution. The proposed approach for the finite-buffer case is shown not to have the numerical stability problems reported in the literature.


Sign in / Sign up

Export Citation Format

Share Document