fractional variational problem
Recently Published Documents


TOTAL DOCUMENTS

17
(FIVE YEARS 2)

H-INDEX

8
(FIVE YEARS 1)

2021 ◽  
Vol 5 (1) ◽  
pp. 24
Author(s):  
Ricardo Almeida ◽  
Natália Martins

In this paper, we present a new fractional variational problem where the Lagrangian depends not only on the independent variable, an unknown function and its left- and right-sided Caputo fractional derivatives with respect to another function, but also on the endpoint conditions and a free parameter. The main results of this paper are necessary and sufficient optimality conditions for variational problems with or without isoperimetric and holonomic restrictions. Our results not only provide a generalization to previous results but also give new contributions in fractional variational calculus. Finally, we present some examples to illustrate our results.


Author(s):  
Akram Kheirabadi ◽  
Asadollah Mahmoudzadeh Vaziri ◽  
Sohrab Effati

Author(s):  
Samer S. Ezz-Eldien ◽  
Ahmed A. El-Kalaawy

This paper presents an efficient approximation schemes for the numerical solution of a fractional variational problem (FVP) and fractional optimal control problem (FOCP). As basis function for the trial solution, we employ the shifted Jacobi orthonormal polynomial. We state and derive a new operational matrix of right-sided Caputo fractional derivative of such polynomial. The new methodology of the present schemes is based on the derived operational matrix with the help of the Gauss–Lobatto quadrature formula and the Lagrange multiplier technique. Accordingly, the aforementioned problems are reduced into systems of algebraic equations. The error bound for the operational matrix of right-sided Caputo derivative is analyzed. In addition, the convergence of the proposed approaches is also included. The results obtained through numerical procedures and comparing our method with other methods demonstrate the high accuracy and powerful of the present approach.


2016 ◽  
Vol 8 (3) ◽  
pp. 60 ◽  
Author(s):  
Eyad Hasan Hasan

<p class="1Body">In this paper, we examined the fractional Euler-Lagrange equations for Holonomic constrained systems. The Euler-Lagrange equations are derived using the fractional variational problem of Lagrange. In addition, we achieved that the classical results were obtained are agreement when fractional derivatives are replaced with the integer order derivatives. Two physical examples are discussed to demonstrate the formalism.</p>


Sign in / Sign up

Export Citation Format

Share Document