jet bundles
Recently Published Documents


TOTAL DOCUMENTS

62
(FIVE YEARS 2)

H-INDEX

11
(FIVE YEARS 0)

2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Cansel Aycan ◽  
Simge Şimşek

The aim of this article is firstly to improve time-dependent Lagrangian energy equations using the super jet bundles on supermanifolds. Later, we adapted this study to the graph bundle. Thus, we created a graph bundle by examining the graph manifold structure in superspace. The geometric structures obtained for the mechanical energy system with superbundle coordinates were reexamined with the graph bundle coordinates. Thus, we were able to calculate the energy that occurs during the motion of a particle when we examine this motion with graph points. The supercoordinates on the superbundle structure of supermanifolds have been given for body and soul and also even and odd dimensions. We have given the geometric interpretation of this property in coordinates for the movement on graph points. Lagrangian energy equations have been applied to the presented example, and the advantage of examining the movement with graph points was presented. In this article, we will use the graph theory to determine the optimal motion, velocity, and energy of the particle, due to graph points. This study showed a physical application and interpretation of supervelocity and supertime dimensions in super-Lagrangian energy equations utilizing graph theory.



Mathematics ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 953
Author(s):  
Francesco C. De Vecchi ◽  
Elisa Mastrogiacomo ◽  
Mattia Turra ◽  
Stefania Ugolini

We establish a generalization of the Noether theorem for stochastic optimal control problems. Exploiting the tools of jet bundles and contact geometry, we prove that from any (contact) symmetry of the Hamilton–Jacobi–Bellman equation associated with an optimal control problem it is possible to build a related local martingale. Moreover, we provide an application of the theoretical results to Merton’s optimal portfolio problem, showing that this model admits infinitely many conserved quantities in the form of local martingales.



Author(s):  
Daniel Canarutto

After a sketch of Lagrangian field theory on jet bundles, the notion of a gauge field is introduced as a section of an affine bundle which is naturally constructed without any involvement with structure groups. An original approach to gauge field theory in terms of covariant differentials (alternative to the jet bundle approach) is then developed, and the adaptations needed in order to deal with general theories are laid out. A careful exposition of the replacement principle allows comparisons with approaches commonly found in the literature.



2020 ◽  
Vol 156 (8) ◽  
pp. 1664-1698
Author(s):  
Frédéric Campana ◽  
Lionel Darondeau ◽  
Erwan Rousseau

AbstractWe define and study jet bundles in the geometric orbifold category. We show that the usual arguments from the compact and the logarithmic settings do not all extend to this more general framework. This is illustrated by simple examples of orbifold pairs of general type that do not admit any global jet differential, even if some of these examples satisfy the Green–Griffiths–Lang conjecture. This contrasts with an important result of Demailly (Holomorphic Morse inequalities and the Green-Griffiths-Lang conjecture, Pure Appl. Math. Q. 7 (2011), 1165–1207) proving that compact varieties of general type always admit jet differentials. We illustrate the usefulness of the study of orbifold jets by establishing the hyperbolicity of some orbifold surfaces, that cannot be derived from the current techniques in Nevanlinna theory. We also conjecture that Demailly's theorem should hold for orbifold pairs with smooth boundary divisors under a certain natural multiplicity condition, and provide some evidence towards it.



Author(s):  
Letterio Gatto ◽  
Andrea Ricolfi
Keyword(s):  


2019 ◽  
Vol 16 (06) ◽  
pp. 1950094
Author(s):  
Petko A. Nikolov ◽  
Nikola P. Petrov

We consider the restriction of a differential operator (DO) [Formula: see text] acting on the sections [Formula: see text] of a vector bundle [Formula: see text] with base [Formula: see text], in the language of jet bundles. When the base of [Formula: see text] is restricted to a submanifold [Formula: see text], all information about derivatives in directions that are not tangent to [Formula: see text] is lost. To restrict [Formula: see text] to a DO [Formula: see text] acting on sections [Formula: see text] of the restricted bundle [Formula: see text] (with [Formula: see text] the natural embedding), one must choose an auxiliary DO [Formula: see text] and express the derivatives non-tangent to [Formula: see text] from the kernel of [Formula: see text]. This is equivalent to choosing a splitting of certain short exact sequence of jet bundles. A property of [Formula: see text] called formal integrability is crucial for restriction’s self-consistency. We give an explicit example illustrating what can go wrong if [Formula: see text] is not formally integrable. As an important application of this methodology, we consider the dimensional reduction of DOs invariant with respect to the action of a connected Lie group [Formula: see text]. The splitting relation comes from the Lie derivative of the action, which is formally integrable. The reduction of the action of another group is also considered.



Author(s):  
Peter Mann

This chapter is key to the understanding of classical mechanics as a geometrical theory. It builds upon earlier chapters on calculus and linear algebra and frames theoretical physics in a new and useful language. Although some degree ofmathematical knowledge is required (from the previous chapters), the focus of this chapter is to explain exactlywhat is going on, rather than give a full working knowledge of the subject. Such an approach is rare in this field, yet is ever so welcome to newcomers who are exposed to this material for the first time! The chapter discusses topology, manifolds, forms, interior products, pullback and pushforward, as well as tangent bundles, cotangent bundles, jet bundles and principle bundles. It also discusses vector fields, integral curves, flow, exterior derivatives and fibre derivatives. In addition, Lie derivatives, Lie brackets, Lie algebra, Lie–Poisson brackets, vertical space, horizontal space, groups and algebroids are explained.



Author(s):  
Peter Mann

This chapter is key to the understanding of classical mechanics as a geometrical theory. It builds upon earlier chapters on calculus and linear algebra and frames theoretical physics in a new and useful language. Although some degree of mathematical knowledge is required (from the previous chapters), the focus of this chapter is to explain exactly what is going on, rather than give a full working knowledge of the subject. Such an approach is rare in this field, yet is ever so welcome to newcomers who are exposed to this material for the first time! The chapter discusses topology, manifolds, forms, interior products, pullback and pushforward, as well as tangent bundles, cotangent bundles, jet bundles and principle bundles. It also discusses vector fields, integral curves, flow, exterior derivatives and fibre derivatives. In addition, Lie derivatives, Lie brackets, Lie algebra, Lie–Poisson brackets, vertical space, horizontal space, groups and algebroids are explained.



2017 ◽  
Vol 15 (01) ◽  
pp. 1850013 ◽  
Author(s):  
Andrew James Bruce ◽  
Katarzyna Grabowska ◽  
Janusz Grabowski

We present the notion of a filtered bundle as a generalization of a graded bundle. In particular, we weaken the necessity of the transformation laws for local coordinates to exactly respect the weight of the coordinates by allowing more general polynomial transformation laws. The key examples of such bundles include affine bundles and various jet bundles, both of which play fundamental roles in geometric mechanics and classical field theory. We also present the notion of double filtered bundles which provide natural generalizations of double vector bundles and double affine bundles. Furthermore, we show that the linearization of a filtered bundle — which can be seen as a partial polarization of the admissible changes of local coordinates — is well defined.



2017 ◽  
Vol 41 ◽  
pp. 854-868
Author(s):  
Hülya KADIOĞLU


Sign in / Sign up

Export Citation Format

Share Document