quantum de finetti theorem
Recently Published Documents


TOTAL DOCUMENTS

8
(FIVE YEARS 0)

H-INDEX

3
(FIVE YEARS 0)

2017 ◽  
Vol 29 (04) ◽  
pp. 1750012 ◽  
Author(s):  
B. V. Rajarama Bhat ◽  
K. R. Parthasarathy ◽  
Ritabrata Sengupta

Motivated by the notions of [Formula: see text]-extendability and complete extendability of the state of a finite level quantum system as described by Doherty et al. [Complete family of separability criteria, Phys. Rev. A 69 (2004) 022308], we introduce parallel definitions in the context of Gaussian states and using only properties of their covariance matrices, derive necessary and sufficient conditions for their complete extendability. It turns out that the complete extendability property is equivalent to the separability property of a bipartite Gaussian state. Following the proof of quantum de Finetti theorem as outlined in Hudson and Moody [Locally normal symmetric states and an analogue of de Finetti’s theorem, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 33(4) (1975/76) 343–351], we show that separability is equivalent to complete extendability for a state in a bipartite Hilbert space where at least one of which is of dimension greater than 2. This, in particular, extends the result of Fannes, Lewis, and Verbeure [Symmetric states of composite systems, Lett. Math. Phys. 15(3) (1988) 255–260] to the case of an infinite dimensional Hilbert space whose C* algebra of all bounded operators is not separable.







2009 ◽  
Vol 50 (1) ◽  
pp. 012105 ◽  
Author(s):  
Robert König ◽  
Graeme Mitchison


2007 ◽  
Vol 7 (4) ◽  
pp. 336-370
Author(s):  
L.M. Ioannou

Ever since entanglement was identified as a computational and cryptographic resource, researchers have sought efficient ways to tell whether a given density matrix represents an unentangled, or \emph{separable}, state. This paper gives the first systematic and comprehensive treatment of this (bipartite) quantum separability problem, focusing on its deterministic (as opposed to randomized) computational complexity. First, I review the one-sided tests for separability, paying particular attention to the semidefinite programming methods. Then, I discuss various ways of formulating the quantum separability problem, from exact to approximate formulations, the latter of which are the paper's main focus. I then give a thorough treatment of the problem's relationship with NP, NP-completeness, and co-NP. I also discuss extensions of Gurvits' NP-hardness result to strong NP-hardness of certain related problems. A major open question is whether the NP-contained formulation (QSEP) of the quantum separability problem is Karp-NP-complete; QSEP may be the first natural example of a problem that is Turing-NP-complete but not Karp-NP-complete. Finally, I survey all the proposed (deterministic) algorithms for the quantum separability problem, including the bounded search for symmetric extensions (via semidefinite programming), based on the recent quantum de Finetti theorem \cite{DPS02,DPS04,qphCKMR06}; and the entanglement-witness search (via interior-point algorithms and global optimization) \cite{ITCE04,IT06}. These two algorithms have the lowest complexity, with the latter being the best under advice of asymptotically optimal point-coverings of the sphere.





Sign in / Sign up

Export Citation Format

Share Document