differentiable stack
Recently Published Documents


TOTAL DOCUMENTS

4
(FIVE YEARS 0)

H-INDEX

1
(FIVE YEARS 0)

Author(s):  
Francesco Bonechi ◽  
Nicola Ciccoli ◽  
Camille Laurent-Gengoux ◽  
Ping Xu

Abstract The purpose of this paper is to investigate $(+1)$-shifted Poisson structures in the context of differential geometry. The relevant notion is that of $(+1)$-shifted Poisson structures on differentiable stacks. More precisely, we develop the notion of the Morita equivalence of quasi-Poisson groupoids. Thus, isomorphism classes of $(+1)$-shifted Poisson stacks correspond to Morita equivalence classes of quasi-Poisson groupoids. In the process, we carry out the following program, which is of independent interest: (1) We introduce a ${\mathbb{Z}}$-graded Lie 2-algebra of polyvector fields on a given Lie groupoid and prove that its homotopy equivalence class is invariant under the Morita equivalence of Lie groupoids, and thus they can be considered to be polyvector fields on the corresponding differentiable stack ${\mathfrak{X}}$. It turns out that $(+1)$-shifted Poisson structures on ${\mathfrak{X}}$ correspond exactly to elements of the Maurer–Cartan moduli set of the corresponding dgla. (2) We introduce the notion of the tangent complex $T_{\mathfrak{X}}$ and the cotangent complex $L_{\mathfrak{X}}$ of a differentiable stack ${\mathfrak{X}}$ in terms of any Lie groupoid $\Gamma{\rightrightarrows } M$ representing ${\mathfrak{X}}$. They correspond to a homotopy class of 2-term homotopy $\Gamma$-modules $A[1]\rightarrow TM$ and $T^{\vee } M\rightarrow A^{\vee }[-1]$, respectively. Relying on the tools of theory of VB-groupoids including homotopy and Morita equivalence of VB-groupoids, we prove that a $(+1)$-shifted Poisson structure on a differentiable stack ${\mathfrak{X}}$ defines a morphism ${L_{\mathfrak{X}}}[1]\to{T_{\mathfrak{X}}}$.



2018 ◽  
Vol 2020 (16) ◽  
pp. 5055-5125
Author(s):  
Henrique Bursztyn ◽  
Francesco Noseda ◽  
Chenchang Zhu

Abstract Stacky Lie groupoids are generalizations of Lie groupoids in which the “space of arrows” of the groupoid is a differentiable stack. In this paper, we consider actions of stacky Lie groupoids on differentiable stacks and their associated quotients. We provide a characterization of principal actions of stacky Lie groupoids, that is, actions whose quotients are again differentiable stacks in such a way that the projection onto the quotient is a principal bundle. As an application, we extend the notion of Morita equivalence of Lie groupoids to the realm of stacky Lie groupoids, providing examples that naturally arise from non-integrable Lie algebroids.





2009 ◽  
Vol 90 (1-3) ◽  
pp. 353-371 ◽  
Author(s):  
Alan Weinstein
Keyword(s):  


Sign in / Sign up

Export Citation Format

Share Document