parabolic quadric
Recently Published Documents


TOTAL DOCUMENTS

7
(FIVE YEARS 2)

H-INDEX

2
(FIVE YEARS 0)

2022 ◽  
Vol 78 ◽  
pp. 101961
Author(s):  
Jeroen Schillewaert ◽  
Geertrui Van de Voorde
Keyword(s):  

Symmetry ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 963
Author(s):  
Metod Saniga ◽  
Zsolt Szabó

A magic three-qubit Veldkamp line of W ( 5 , 2 ) , i.e., the line comprising a hyperbolic quadric Q + ( 5 , 2 ) , an elliptic quadric Q − ( 5 , 2 ) and a quadratic cone Q ^ ( 4 , 2 ) that share a parabolic quadric Q ( 4 , 2 ) , the doily, is shown to provide an interesting model for the Veldkamp space of the doily. The model is based on the facts that: (a) the 20 off-doily points of Q + ( 5 , 2 ) form ten complementary pairs, each corresponding to a unique grid of the doily; (b) the 12 off-doily points of Q − ( 5 , 2 ) form six complementary pairs, each corresponding to a unique ovoid of the doily; and (c) the 15 off-doily points of Q ^ ( 4 , 2 ) , disregarding the nucleus of Q ( 4 , 2 ) , are in bijection with the 15 perp-sets of the doily. These findings lead to a conjecture that also parapolar spaces can be relevant for quantum information.


2017 ◽  
Vol 20 (8) ◽  
pp. 1691-1695 ◽  
Author(s):  
Mauro Zannetti
Keyword(s):  

2008 ◽  
Vol 14 (1) ◽  
pp. 14-21 ◽  
Author(s):  
Jan De Beule ◽  
András Gács

10.37236/1102 ◽  
2006 ◽  
Vol 13 (1) ◽  
Author(s):  
Bart De Bruyn ◽  
Pieter Vandecasteele

The maximal and next-to-maximal subspaces of a nonsingular parabolic quadric $Q(2n,2)$, $n \geq 2$, which are not contained in a given hyperbolic quadric $Q^+(2n-1,2) \subset Q(2n,2)$ define a sub near polygon ${\Bbb I}_n$ of the dual polar space $DQ(2n,2)$. It is known that every valuation of $DQ(2n,2)$ induces a valuation of ${\Bbb I}_n$. In this paper, we classify all valuations of the near octagon ${\Bbb I}_4$ and show that they are all induced by a valuation of $DQ(8,2)$. We use this classification to show that there exists up to isomorphism a unique isometric full embedding of ${\Bbb I}_n$ into each of the dual polar spaces $DQ(2n,2)$ and $DH(2n-1,4)$.


2005 ◽  
Vol DMTCS Proceedings vol. AE,... (Proceedings) ◽  
Author(s):  
Miroslava Cimráková ◽  
Veerle Fack

International audience The generalized quadrangle $Q(4,q)$ arising from the parabolic quadric in $PG(4,q)$ always has an ovoid. It is not known whether a minimal blocking set of size smaller than $q^2 + q$ (which is not an ovoid) exists in $Q(4,q)$, $q$ odd. We present results on smallest blocking sets in $Q(4,q)$, $q$ odd, obtained by a computer search. For $q = 5,7,9,11$ we found minimal blocking sets of size $q^2 + q - 2$ and we discuss their structure. By an exhaustive search we excluded the existence of a minimal blocking set of size $q^2 + 3$ in $Q(4,7)$.


Sign in / Sign up

Export Citation Format

Share Document