hyperbolic quadric
Recently Published Documents


TOTAL DOCUMENTS

36
(FIVE YEARS 20)

H-INDEX

4
(FIVE YEARS 2)

Author(s):  
Imsoon Jeong ◽  
Eunmi Pak ◽  
Young Jin Suh

In this paper, we introduce the notion of normal Jacobi operator of Codazzi type for real hypersurfaces in the complex hyperbolic quadric [Formula: see text]. The normal Jacobi operator of Codazzi type implies that the unit normal vector field [Formula: see text] becomes [Formula: see text]-principal or [Formula: see text]-isotropic. Then according to each case, we give a complete classification of Hopf real hypersurfaces in [Formula: see text] with normal Jacobi operator of Codazzi type. The result of the classification shows that no such hypersurfaces exist.


Mathematics ◽  
2021 ◽  
Vol 9 (18) ◽  
pp. 2272
Author(s):  
Metod Saniga ◽  
Henri de Boutray ◽  
Frédéric Holweck ◽  
Alain Giorgetti

We study certain physically-relevant subgeometries of binary symplectic polar spaces W(2N−1,2) of small rank N, when the points of these spaces canonically encode N-qubit observables. Key characteristics of a subspace of such a space W(2N−1,2) are: the number of its negative lines, the distribution of types of observables, the character of the geometric hyperplane the subspace shares with the distinguished (non-singular) quadric of W(2N−1,2) and the structure of its Veldkamp space. In particular, we classify and count polar subspaces of W(2N−1,2) whose rank is N−1. W(3,2) features three negative lines of the same type and its W(1,2)’s are of five different types. W(5,2) is endowed with 90 negative lines of two types and its W(3,2)’s split into 13 types. A total of 279 out of 480 W(3,2)’s with three negative lines are composite, i.e., they all originate from the two-qubit W(3,2). Given a three-qubit W(3,2) and any of its geometric hyperplanes, there are three other W(3,2)’s possessing the same hyperplane. The same holds if a geometric hyperplane is replaced by a ‘planar’ tricentric triad. A hyperbolic quadric of W(5,2) is found to host particular sets of seven W(3,2)’s, each of them being uniquely tied to a Conwell heptad with respect to the quadric. There is also a particular type of W(3,2)’s, a representative of which features a point each line through which is negative. Finally, W(7,2) is found to possess 1908 negative lines of five types and its W(5,2)’s fall into as many as 29 types. A total of 1524 out of 1560 W(5,2)’s with 90 negative lines originate from the three-qubit W(5,2). Remarkably, the difference in the number of negative lines for any two distinct types of four-qubit W(5,2)’s is a multiple of four.


Author(s):  
Qingxin Zhou ◽  
Jingbo Xu ◽  
Zhigang Wang

The hyperbolic worldsheets and the hyperbolic worldline generated by null Cartan curves are defined and their geometric properties are investigated. As applications of singularity theory, the singularities of the hyperbolic worldsheets and the hyperbolic worldline are classified by using the approach of the unfolding theory in singularity theory. It is shown that under appropriate conditions, the hyperbolic worldsheet is diffeomorphic to cuspidal edge or swallowtail type of singularity and the hyperbolic worldline is diffeomorphic to cusp. An important geometric invariant which has a close relation with the singularities of the hyperbolic worldsheets and worldlines is found such that the singularities of the hyperbolic worldsheets and worldlines can be characterized by the invariant. Meanwhile, the contact of the spacelike normal curve of a null Cartan curve with hyperbolic quadric or world hypersheet is discussed in detail. In addition, the dual relationships between the spacelike normal curve of a null Cartan curve and the hyperbolic worldsheet are described. Moreover, it is demonstrated that the spacelike normal curve of a null Cartan curve and the hyperbolic worldsheet are [Formula: see text]-dual each other.


2020 ◽  
Vol 343 (11) ◽  
pp. 112044
Author(s):  
Puspendu Pradhan ◽  
Bikramaditya Sahu

Sign in / Sign up

Export Citation Format

Share Document