mesh condition
Recently Published Documents


TOTAL DOCUMENTS

8
(FIVE YEARS 0)

H-INDEX

3
(FIVE YEARS 0)

Author(s):  
Caichao Zhu ◽  
Haixia Wang ◽  
Mingyong Liu ◽  
Xuesong Du ◽  
Chaosheng Song

Beveloid gears are widely applied in fields like ships, automobiles and industrial precision transmissions. In this paper, the formulas of the beveloid gear tooth surface used in marine transmissions were derived and a mesh model for the intersected beveloid gear pair was setup. Then loaded tooth contact analysis was performed using the finite element method considering the coupling of the assembly errors and the elastic deformation of tooth surface. Through the analysis, the influences of assembly errors on contact patterns, mesh force and tooth surface deformations were investigated. In a further step, the tooth profile modifications were performed to alleviate the edge contact and a subsequent major improvement of the mesh condition was obtained. Finally, loaded tooth contact experiments for marine gearboxes with small shaft angle were conducted. The tested results showed good correlation with the computed results. This work may provide some value for the practical design aiming at improved contact characteristics of the beveloid gears with intersected axes.


1978 ◽  
Vol 100 (1) ◽  
pp. 61-68 ◽  
Author(s):  
D. P. Townsend ◽  
L. S. Akin

An analysis was conducted for oil jet lubrication on the disengaging side of a gear mesh. Results of the analysis were computerized and used to determine the oil jet impingement depth for several gear ratios and oil jet to pitch line velocity ratios. An experimental program was conducted on the NASA gear test rig using high-speed photography to experimentally determine the oil jet impingement depth on the disengaging side of mesh. Impingement depth reaches a maximum at gear ratio near 1.5 where chopping by the leading gear tooth limits the impingement depth. The pinion impingement depth is zero above a gear ratio of 1.172 for a jet velocity to pitch time velocity ratio of 1.0 and is similar for other velocity ratios. The impingement depth for gear and pinion are equal and approximately one-half the maximum at a gear ratio of 1.0. Impingement depth on either the gear or pinion may be improved by relocation of the jet from the pitch line or by changing the jet angle. Results of the analysis were verified by experimental results using a high-speed camera and a well lighted oil jet.


Sign in / Sign up

Export Citation Format

Share Document