function calculus
Recently Published Documents


TOTAL DOCUMENTS

17
(FIVE YEARS 3)

H-INDEX

5
(FIVE YEARS 0)

Author(s):  
Ahmed Bokhari ◽  
Rachid Belgacem ◽  
Sunil Kumar ◽  
Dumitru Baleanu ◽  
Salih Djilali

2020 ◽  
Vol 71 (1) ◽  
pp. 281-294
Author(s):  
Niels Jakob Laustsen ◽  
Vladimir G Troitsky

Abstract We characterize the Archimedean vector lattices that admit a positively homogeneous continuous function calculus by showing that the following two conditions are equivalent for each $n$-tuple $\boldsymbol{x} = (x_1,\ldots ,x_n)\in X^n$, where $X$ is an Archimedean vector lattice and $n\in{\mathbb{N}}$: • there is a vector lattice homomorphism $\Phi _{\boldsymbol{x}}\colon H_n\to X$ such that $$\begin{equation*}\Phi_{\boldsymbol{x}}(\pi_i^{(n)}) = x_i\qquad (i\in\{1,\ldots,n\}),\end{equation*}$$where $H_n$ denotes the vector lattice of positively homogeneous, continuous, real-valued functions defined on ${\mathbb{R}}^n$ and $\pi _i^{(n)}\colon{\mathbb{R}}^n\to{\mathbb{R}}$ is the $i^{\text{}}$th coordinate projection;• there is a positive element $e\in X$ such that $e\geqslant \lvert x_1\rvert \vee \cdots \vee \lvert x_n\rvert$ and the norm$$\begin{equation*}\lVert x\rVert_e = \inf\bigl\{ \lambda\in[0,\infty)\:\colon\:\lvert x\rvert{\leqslant}\lambda e\bigr\},\end{equation*}$$defined for each $x$ in the order ideal $I_e$ of $X$ generated by $e$, is complete when restricted to the closed sublattice of $I_e$ generated by $x_1,\ldots ,x_n$. Moreover, we show that a vector space which admits a ‘sufficiently strong’ $H_n$-function calculus for each $n\in{\mathbb{N}}$ is automatically a vector lattice, and we explore the situation in the non-Archimedean case by showing that some non-Archimedean vector lattices admit a positively homogeneous continuous function calculus, while others do not.


2018 ◽  
Vol 62 (3) ◽  
pp. 663-669
Author(s):  
V. G. Troitsky ◽  
M. S. Türer

AbstractWe prove that Krivine’s Function Calculus is compatible with integration. Let $(\unicode[STIX]{x1D6FA},\unicode[STIX]{x1D6F4},\unicode[STIX]{x1D707})$ be a finite measure space, $X$ a Banach lattice, $\mathbf{x}\in X^{n}$, and $f:\mathbb{R}^{n}\times \unicode[STIX]{x1D6FA}\rightarrow \mathbb{R}$ a function such that $f(\cdot ,\unicode[STIX]{x1D714})$ is continuous and positively homogeneous for every $\unicode[STIX]{x1D714}\in \unicode[STIX]{x1D6FA}$, and $f(\mathbf{s},\cdot )$ is integrable for every $\mathbf{s}\in \mathbb{R}^{n}$. Put $F(\mathbf{s})=\int f(\mathbf{s},\unicode[STIX]{x1D714})\,d\unicode[STIX]{x1D707}(\unicode[STIX]{x1D714})$ and define $F(\mathbf{x})$ and $f(\mathbf{x},\unicode[STIX]{x1D714})$ via Krivine’s Function Calculus. We prove that under certain natural assumptions $F(\mathbf{x})=\int f(\mathbf{x},\unicode[STIX]{x1D714})\,d\unicode[STIX]{x1D707}(\unicode[STIX]{x1D714})$, where the right hand side is a Bochner integral.


2012 ◽  
Vol 45 (9) ◽  
pp. 284-290 ◽  
Author(s):  
Pieter Collins ◽  
Davide Bresolin ◽  
Luca Geretti ◽  
Tiziano Villa

2011 ◽  
Vol 5 (4) ◽  
pp. 437-467 ◽  
Author(s):  
Pieter Collins ◽  
Milad Niqui ◽  
Nathalie Revol

Sign in / Sign up

Export Citation Format

Share Document