separation of rees
Recently Published Documents


TOTAL DOCUMENTS

3
(FIVE YEARS 1)

H-INDEX

1
(FIVE YEARS 0)

Membranes ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 80
Author(s):  
Atiyeh Bashiri ◽  
Arash Nikzad ◽  
Reza Maleki ◽  
Mohsen Asadnia ◽  
Amir Razmjou

Recently, demands for raw materials like rare earth elements (REEs) have increased considerably due to their high potential applications in modern industry. Additionally, REEs’ similar chemical and physical properties caused their separation to be difficult. Numerous strategies for REEs separation such as precipitation, adsorption and solvent extraction have been applied. However, these strategies have various disadvantages such as low selectivity and purity of desired elements, high cost, vast consumption of chemicals and creation of many pollutions due to remaining large amounts of acidic and alkaline wastes. Membrane separation technology (MST), as an environmentally friendly approach, has recently attracted much attention for the extraction of REEs. The separation of REEs by membranes usually occurs through three mechanisms: (1) complexation of REE ions with extractant that is embedded in the membrane matrix, (2) adsorption of REE ions on the surface created-active sites on the membrane and (3) the rejection of REE ions or REEs complex with organic materials from the membrane. In this review, we investigated the effect of these mechanisms on the selectivity and efficiency of the membrane separation process. Finally, potential directions for future studies were recommended at the end of the review.


2017 ◽  
Vol 2 (4) ◽  
Author(s):  
Beibei Chen ◽  
Man He ◽  
Huashan Zhang ◽  
Zucheng Jiang ◽  
Bin Hu

AbstractThe present capability of rare earth element (REE) analysis has been achieved by the development of two instrumental techniques. The efficiency of spectroscopic methods was extraordinarily improved for the detection and determination of REE traces in various materials. On the other hand, the determination of REEs very often depends on the preconcentration and separation of REEs, and chromatographic techniques are very powerful tools for the separation of REEs. By coupling with sensitive detectors, many ambitious analytical tasks can be fulfilled.Liquid chromatography is the most widely used technique. Different combinations of stationary phases and mobile phases could be used in ion exchange chromatography, ion chromatography, ion-pair reverse-phase chromatography and some other techniques. The application of gas chromatography is limited because only volatile compounds of REEs can be separated. Thin-layer and paper chromatography are techniques that cannot be directly coupled with suitable detectors, which limit their applications. For special demands, separations can be performed by capillary electrophoresis, which has very high separation efficiency.


2006 ◽  
Vol 48 (5) ◽  
pp. 462-466
Author(s):  
A. A. Kopyrin ◽  
M. A. Afonin ◽  
A. A. Fomichev

Sign in / Sign up

Export Citation Format

Share Document