nonlinear dispersive wave
Recently Published Documents


TOTAL DOCUMENTS

74
(FIVE YEARS 11)

H-INDEX

17
(FIVE YEARS 1)



Author(s):  
Hendrik Ranocha ◽  
Manuel Quezada de Luna ◽  
David I. Ketcheson

AbstractWe study the numerical error in solitary wave solutions of nonlinear dispersive wave equations. A number of existing results for discretizations of solitary wave solutions of particular equations indicate that the error grows quadratically in time for numerical methods that do not conserve energy, but grows only linearly for conservative methods. We provide numerical experiments suggesting that this result extends to a very broad class of equations and numerical methods.



Author(s):  
Bingyu Zhang ◽  
Shu-Ming Sun ◽  
Xin Yang ◽  
Ning Zhong

The solutions of the Cauchy problem of the KdV equation on a periodic domain $\T$,  \[ u_t +uu_x +u_{xxx} =0, \quad u(x,0)= \phi (x), \quad x\in \T, \ t\in \R,\]  possess neither  the sharp Kato smoothing property,  \[ \phi \in H^s (\T) \implies \partial ^{s+1}_xu \in L^{\infty}_x (\T, L^2 (0,T)),\]  nor the Kato smoothing property,  \[ \phi \in H^s (\T) \implies u\in L^2 (0,T; H^{s+1} (\T)).\]  Considered in this article is the Cauchy problem of the following dispersive equations posed on the periodic domain $\T$,  \[ u_t +uu_x +u_{xxx} - g(x) (g(x) u)_{xx} =0, \qquad u(x,0)= \phi (x), \quad x\in \T, \  t>0 \, ,\ \qquad (1) \]  where $g\in C^{\infty} (\T)$ is  a  real value function with  the support  \[ \mbox{$\omega = \{ x\in \T, \  g(x) \ne 0\}$.}\]  It is shown  that    \begin{itemize}  \item[(1)]  if $\omega\ne \emptyset$,   then the solutions of  the Cauchy problem (1) possess the Kato smoothing property;   \item[(2)] if     $g$ is a nonzero constant function,  then the solutions of  the Cauchy problem (1) possess the  sharp Kato smoothing property.   \end{itemize}





2020 ◽  
Vol 231 (10) ◽  
pp. 4415-4420 ◽  
Author(s):  
Xin-Yi Gao ◽  
Yong-Jiang Guo ◽  
Wen-Rui Shan


2020 ◽  
Author(s):  
Denys Dutykh ◽  
Theodoros Katsaounis ◽  
Dimitrios Mitsotakis

Finite volume schemes are commonly used to construct approximate solutions to conservation laws. In this study we extend the framework of the finite volume methods to dispersive water wave models, in particular to Boussinesq type systems. We focus mainly on the application of the method to bidirectional nonlinear, dispersive wave propagation in one space dimension. Special emphasis is given to important nonlinear phenomena such as solitary waves interactions.



2020 ◽  
Author(s):  
Denys Dutykh ◽  
Theodoros Katsaounis ◽  
Dimitrios Mitsotakis

Finite volume schemes are commonly used to construct approximate solutions to conservation laws. In this study we extend the framework of the finite volume methods to dispersive water wave models, in particular to Boussinesq type systems. We focus mainly on the application of the method to bidirectional nonlinear, dispersive wave propagation in one space dimension. Special emphasis is given to important nonlinear phenomena such as solitary waves interactions.



2020 ◽  
Vol 10 (2) ◽  
Author(s):  
Joseph Zaleski ◽  
Miguel Onorato ◽  
Yuri V. Lvov


Sign in / Sign up

Export Citation Format

Share Document