scholarly journals A Common Extension of Arhangel’skĭ’s Theorem and the Hajnal–Juhász Inequality

2020 ◽  
Vol 63 (1) ◽  
pp. 197-203 ◽  
Author(s):  
Angelo Bella ◽  
Santi Spadaro

AbstractWe present a result about $G_{\unicode[STIX]{x1D6FF}}$ covers of a Hausdorff space that implies various known cardinal inequalities, including the following two fundamental results in the theory of cardinal invariants in topology: $|X|\leqslant 2^{L(X)\unicode[STIX]{x1D712}(X)}$ (Arhangel’skiĭ) and $|X|\leqslant 2^{c(X)\unicode[STIX]{x1D712}(X)}$ (Hajnal–Juhász). This solves a question that goes back to Bell, Ginsburg and Woods’s 1978 paper (M. Bell, J.N. Ginsburg and R.G. Woods, Cardinal inequalities for topological spaces involving the weak Lindelöf number, Pacific J. Math. 79(1978), 37–45) and is mentioned in Hodel’s survey on Arhangel’skiĭ’s Theorem (R. Hodel, Arhangel’skii’s solution to Alexandroff’s problem: A survey, Topology Appl. 153(2006), 2199–2217).In contrast to previous attempts, we do not need any separation axiom beyond $T_{2}$.

2013 ◽  
Vol 1 ◽  
pp. 37-45 ◽  
Author(s):  
Iván Sánchez

AbstractWe show that a regular totally ω-narrow paratopological group G has countable index of regularity, i.e., for every neighborhood U of the identity e of G, we can find a neighborhood V of e and a countable family of neighborhoods of e in G such that ∩W∈γ VW−1⊆ U. We prove that every regular (Hausdorff) totally !-narrow paratopological group is completely regular (functionally Hausdorff). We show that the index of regularity of a regular paratopological group is less than or equal to the weak Lindelöf number. We also prove that every Hausdorff paratopological group with countable π- character has a regular Gσ-diagonal.


1978 ◽  
Vol 79 (1) ◽  
pp. 37-45 ◽  
Author(s):  
Murray Bell ◽  
John Ginsburg ◽  
Russell Woods

2019 ◽  
Vol S (01) ◽  
pp. 706-709
Author(s):  
Maragatha Meenakshi P. ◽  
Chandran S.

Author(s):  
Hind Fadhil Abbas

The fusion of technology and science is a very complex and scientific phenomenon that still carries mysteries that need to be understood. To unravel these phenomena, mathematical models are beneficial to treat different systems with unpredictable system elements. Here, the generalized intuitionistic fuzzy ideal is studied with topological space. These concepts are useful to analyze new generalized intuitionistic models. The basic structure is studied here with various relations between the generalized intuitionistic fuzzy ideals and the generalized intuitionistic fuzzy topologies. This study includes intuitionistic fuzzy topological spaces (IFS); the fundamental definitions of intuitionistic fuzzy Hausdorff space; intuitionistic fuzzy regular space; intuitionistic fuzzy normal space; intuitionistic fuzzy continuity; operations on IFS, the compactness and separation axioms.


2021 ◽  
Vol 7 ◽  
pp. 20-36
Author(s):  
Raja Mohammad Latif

In 2016 A. Devika and A. Thilagavathi introduced a new class of sets called M*-open sets and investigated some properties of these sets in topological spaces. In this paper, we introduce and study a new class of spaces, namely M*-irresolute topological vector spaces via M*-open sets. We explore and investigate several properties and characterizations of this new notion of M*-irresolute topological vector space. We give several characterizations of M*-Hausdorff space. Moreover, we show that the extreme point of the convex subset of M*-irresolute topological vector space X lies on the boundary.


1979 ◽  
Vol 31 (3) ◽  
pp. 663-672 ◽  
Author(s):  
C. Ward Henson

The problems considered here arose in connection with the interesting use by Loeb [8] and Anderson [1], [2] of Loeb's measure construction [7] to define measures on certain topological spaces. The original problem, from which the results given here developed, was to identify precisely the family of sets on which these measures are defined.To be precise, let be a set theoretical structure and * a nonstandard extension of , as in the usual framework for nonstandard analysis (see [10]). Let X be a Hausdorff space in and stx the standard part map for X, defined on the set of nearstandard points in *X. Suppose, for example, µ is an internal, finitely additive probability measure defined on the internal subsets of *X.


2012 ◽  
Vol 11 (01) ◽  
pp. 1250014 ◽  
Author(s):  
PAPIYA BHATTACHARJEE

This paper studies algebraic frames L and the set Min (L) of minimal prime elements of L. We will endow the set Min (L) with two well-known topologies, known as the Hull-kernel (or Zariski) topology and the inverse topology, and discuss several properties of these two spaces. It will be shown that Min (L) endowed with the Hull-kernel topology is a zero-dimensional, Hausdorff space; whereas, Min (L) endowed with the inverse topology is a T1, compact space. The main goal will be to find conditions on L for the spaces Min (L) and Min (L)-1 to have various topological properties; for example, compact, locally compact, Hausdorff, zero-dimensional, and extremally disconnected. We will also discuss when the two topological spaces are Boolean and Stone spaces.


2018 ◽  
Vol 2 (2) ◽  
pp. 28-31
Author(s):  
Muhammad Ishfaq ◽  
Arif Mehmood Khattak ◽  
Gulzar Ali Khan ◽  
Zaheer Anjum, ◽  
Zia Ullah, ◽  
...  

1973 ◽  
Vol 16 (4) ◽  
pp. 545-549 ◽  
Author(s):  
Pedro Morales

In 1962, J. M. G. Fell [5] indicated the important role played by certain topological spaces which, though locally compact in a specialized sense, do not, in general, satisfy even the weakest separation axiom. He called them "locally compact". These were called "punktal kompakt" by Flachsmeyer [6] and to avoid confusion, we shall call them pointwise compact spaces.


Sign in / Sign up

Export Citation Format

Share Document