semialgebraic subset
Recently Published Documents


TOTAL DOCUMENTS

4
(FIVE YEARS 3)

H-INDEX

1
(FIVE YEARS 0)

Author(s):  
María López Quijorna

AbstractA basic closed semialgebraic subset of $${\mathbb {R}}^{n}$$ R n is defined by simultaneous polynomial inequalities $$p_{1}\ge 0,\ldots ,p_{m}\ge 0$$ p 1 ≥ 0 , … , p m ≥ 0 . We consider Lasserre’s relaxation hierarchy to solve the problem of minimizing a polynomial over such a set. These relaxations give an increasing sequence of lower bounds of the infimum. In this paper we provide a new certificate for the optimal value of a Lasserre relaxation to be the optimal value of the polynomial optimization problem. This certificate is to check if a certain matrix has a generalized Hankel form. This certificate is more general than the already known certificate of an optimal solution being flat. In case we have detected optimality we will extract the potential minimizers with a truncated version of the Gelfand–Naimark–Segal construction on the optimal solution of the Lasserre relaxation. We prove also that the operators of this truncated construction commute if and only if the matrix of this modified optimal solution is a generalized Hankel matrix. This generalization of flatness will enable us to prove, with the use of the GNS truncated construction, a result of Curto and Fialkow on the existence of quadrature rule if the optimal solution is flat and a result of Xu and Mysovskikh on the existence of a Gaussian quadrature rule if the modified optimal solution is a generalized Hankel matrix . At the end, we provide a numerical linear algebraic algorithm for detecting optimality and extracting solutions of a polynomial optimization problem.


Author(s):  
Paul Breiding ◽  
Hanieh Keneshlou ◽  
Antonio Lerario

Abstract Motivated by Hilbert’s 16th problem we discuss the probabilities of topological features of a system of random homogeneous polynomials. The distribution for the polynomials is the Kostlan distribution. The topological features we consider are type-$W$ singular loci. This is a term that we introduce and that is defined by a list of equalities and inequalities on the derivatives of the polynomials. In technical terms a type-$W$ singular locus is the set of points where the jet of the Kostlan polynomials belongs to a semialgebraic subset $W$ of the jet space, which we require to be invariant under orthogonal change of variables. For instance, the zero set of polynomial functions or the set of critical points fall under this definition. We will show that, with overwhelming probability, the type-$W$ singular locus of a Kostlan polynomial is ambient isotopic to that of a polynomial of lower degree. As a crucial result, this implies that complicated topological configurations are rare. Our results extend earlier results from Diatta and Lerario who considered the special case of the zero set of a single polynomial. Furthermore, for a given polynomial function $p$ we provide a deterministic bound for the radius of the ball in the space of differentiable functions with center $p$, in which the $W$-singularity structure is constant.


2019 ◽  
Vol 20 (02) ◽  
pp. 2050009
Author(s):  
Elías Baro ◽  
Pantelis E. Eleftheriou ◽  
Ya’acov Peterzil

We prove the following instance of a conjecture stated in [P. E. Eleftheriou and Y. Peterzil, Definable quotients of locally definable groups, Selecta Math. (N.S.) 18(4) (2012) 885–903]. Let [Formula: see text] be an abelian semialgebraic group over a real closed field [Formula: see text] and let [Formula: see text] be a semialgebraic subset of [Formula: see text]. Then the group generated by [Formula: see text] contains a generic set and, if connected, it is divisible. More generally, the same result holds when [Formula: see text] is definable in any o-minimal expansion of [Formula: see text] which is elementarily equivalent to [Formula: see text]. We observe that the above statement is equivalent to saying: there exists an [Formula: see text] such that [Formula: see text] is an approximate subgroup of [Formula: see text].


2016 ◽  
Vol 161 (2) ◽  
pp. 283-303 ◽  
Author(s):  
SUNGWOON KIM ◽  
INKANG KIM

AbstractLet Γ be a nonuniform lattice acting on the real hyperbolic n-space. We show that in dimension greater than or equal to 4, the volume of a representation is constant on each connected component of the representation variety of Γ in SO(n, 1). Furthermore, in dimensions 2 and 3, there is a semialgebraic subset of the representation variety such that the volume of a representation is constant on connected components of the semialgebraic subset. Combining our approach with the main result of [2] gives a new proof of the local rigidity theorem for nonuniform hyperbolic lattices and the analogue of Soma's theorem, which shows that the number of orientable hyperbolic manifolds dominated by a closed, connected, orientable 3-manifold is finite, for noncompact 3-manifolds.


Sign in / Sign up

Export Citation Format

Share Document