Geochemical Perspectives
Latest Publications


TOTAL DOCUMENTS

23
(FIVE YEARS 5)

H-INDEX

13
(FIVE YEARS 1)

Published By European Association Of Geochemistry

2224-2759, 2223-7755

2021 ◽  
pp. 145-307
Author(s):  
Bo Barker Jørgensen

Complex interactions between microbial communities and geochemical processes drive the major element cycles and control the function of marine sediments as a dynamic reservoir of organic matter. Sulfate reduction is globally the dominant pathway of anaerobic mineralisation and is the main source of sulfide. The effective re-oxidation of this sulfide at the direct or indirect expense of oxygen is a prerequisite for aerobic life on our planet. Although largely hidden beneath the oxic sediment surface, the sulfur cycle is therefore critical for Earth’s redox state. This Geochemical Perspectives begins with a brief primer on the sulfur cycle of marine sediments and a description of my own scientific journey through nearly fifty years of studies of sulfur geochemistry and microbiology. Among the main objectives of these studies were to quantify the main processes of the sulfur cycle and to identify the microbial communities behind them. Radiotracers in combination with chemical analyses have thereby been used extensively for laboratory experiments, supported by diverse molecular microbiological methods. The following sections discuss the main processes of sulfate reduction, sulfide oxidation and disproportionation of the inorganic sulfur intermediates, especially of elemental sulfur and thiosulfate. The experimental approaches used enable the analysis of how environmental factors such as substrate concentration or temperature affect process rates and how concurrent processes of sulfate reduction and sulfide oxidation drive a cryptic sulfur cycle. The chemical energy of sulfide is used by chemolithotrophic bacteria, including fascinating communities of big sulfur bacteria and cable bacteria, and supports their dark CO2 fixation, which produces new microbial biomass. During the burial and aging of marine sediments, the predominant mineralisation processes change through a cascade of redox reactions, and the rate of organic matter degradation drops continuously over many orders of magnitude. The main pathways of anaerobic mineralisation and the age control of the organic matter turnover are discussed. In the deep methanic zone, only a few percent of the entire degradation process remains, which provides a small boost of substrate for sulfate reduction through the process of anaerobic methane oxidation. The stable isotopes of sulfur provide an additional tool to understand these diagenetic processes, whereby the combination of microbial isotope fractionation and open system diagenesis generate a differential diffusion flux of the isotopes. In relation to the organic carbon cycle of the seabed and the contribution of methane, the paper discusses the global sulfur budget and the role of sulfate reduction for organic matter mineralisation in different depth regions of the ocean – from coast to deep sea. The published estimates of these parameters are evaluated and compared. Finally, the paper looks at future perspectives with respect to gaps in our current understanding and the need for further studies.


2021 ◽  
pp. 1-144
Author(s):  
Jibamitra Ganguly

This article has three major components that include, in addition to the technical aspects, reminiscences of my academic upbringing, my move to the USA from India, and my professional career. I have recounted many stories that I hope convey some sense of time, especially in these two countries with vastly different cultures, my personal journey with its ups and downs and how I made the transition to an academic career path in USA even though that was not in my future plan as a young man. The development of the field of thermobarometry and its integration with diffusion and crystal kinetic modelling of compositional zoning (or lack thereof) and cation ordering in minerals have led to important quantitative constraints on the pressure-temperature-time evolution of terrestrial rocks and meteorites. I review the historical developments in these areas and a segment of my own research spanning the period of 1964-2021. The foundational works of the thermometry of metamorphic rocks and palaeothermometry were laid at the University of Chicago around 1950. Subsequently, the synergetic growth of thermodynamics and experimental studies in petrology in the 1960s and 1970s, along with the introduction of electron microprobe as a nondestructive analytical tool with micron scale resolution, gave a major boost to the field of thermobarometry. There were also significant new developments in the field of thermodynamics of solid solutions in the petrology community and demonstration from observational data, countering strong scepticism, that the principles of classical thermodynamics were applicable to “complex natural systems”. The section on thermodynamic basis of thermobarometry concludes with a discussion of the thermodynamics of trace element and single mineral thermometry. I further deal with the experimental protocols, along with selected examples, for phase equilibrium studies that provide the bedrock foundation for the field of thermobarometry based on elemental compositions of coexisting minerals in a rock. It is followed by an account of the controversies and international meetings relating to the aluminum silicate and peridotite phase diagrams that play crucial roles in the thermobarometry of metamorphic rocks and mantle xenoliths, respectively. The construction of quantitative petrogenetic grids to display stability relations of minerals in multicomponent–multiphase systems came into play in the field of metamorphic petrology in the mid-1960s and early 1970s. Augmented by experimental data, these petrogenetic grids led to important discoveries about the P-T-<em>f</em>(O<sub>2</sub>) and bulk compositional controls on the stability of certain “index” minerals that are used to define metamorphic isograds and different types of regional metamorphism; one such grid also opened up a new field that came to be known as ultra-high temperature metamorphism. The construction of petrogenetic grids has now evolved to computer based calculations of complex equilibrium P-T phase diagrams, commonly referred to as “pseudosections”, by minimisation of Gibbs free energy of a system with fixed bulk composition. I discuss these historical developments and modern advancements. Subsequently I highlight some aspects of thermobarometry and diffusion kinetic modelling of selected natural samples along with their broader implications and present a critical discussion of different protocols for thermobarometry of natural assemblages. Following up on the introductory historical perspective of development of palaeothermometry, I discuss the modern advancements using density functional theory (DFT). Examples of DFT based calculations have been shown for hydrogen isotope fractionation in mineral-water/hydrogen systems and “clumped isotope” thermometry. The hydrogen isotope fractionation data led the development of new low temperature palaeothermometers using serpentine-talc/brucite mineral pairs. These results enable simultaneous solutions of both temperature and source of fluid in the serpentinisation process of rocks. The final section is devoted to high temperature thermochronology dealing with the problems of closure temperature of decay systems in minerals and the use of bulk and spatial resetting of mineral age according to a specific decay system to determine cooling rates of the host rocks. Complications arise in the interpretation of mineral ages determined by such decay systems as <sup>176</sup>Lu-<sup>176</sup>Hf or the short- lived system <sup>53</sup>Mn-<sup>53</sup>Cr in which the parent nuclide has a much lower closure temperature than the corresponding daughter product. Numerical simulations help explain the discrepancy between the <sup>176</sup>Lu-<sup>176</sup>Hf and <sup>147</sup>Sm-<sup>143</sup>Nd ages of garnets in metamorphic rocks and enable construction of the entire T-t cycle from the discrepant ages and some additional constraints.


2020 ◽  
Vol 9 (2) ◽  
pp. 135-313
Author(s):  
Bernard Marty

My journey in science began with the study of volcanic gases, sparking an interest in the origin, and ultimate fate, of the volatile elements in the interior of our planet. How did these elements, so crucial to life and our surface environment, come to be sequestered within the deepest regions of the Earth, and what can they tell us about the processes occurring there? My approach has been to establish geochemical links between the noble gases, physical tracers par excellence, with major volatile elements of environmental importance, such as water, carbon and nitrogen, in mantle-derived rocks and gases. From these analyses we have learned that the Earth is relatively depleted in volatile elements when compared to its potential cosmochemical ancestors (e.g., ~2 ppm nitrogen compared to several hundreds of ppm in primitive meteorites) and that natural fluxes of carbon are two orders of magnitude lower than those emitted by current anthropogenic activity. Further insights into the origin of terrestrial volatiles have come from space missions that documented the composition of the proto-solar nebula and the outer solar system. The consensus behind the origin of the atmosphere and the oceans is evolving constantly, although recently a general picture has started to emerge. At the dawn of the solar system, the volatile-forming elements (H, C, N, noble gases) that form the majority of our atmosphere and oceans were trapped in solid dusty phases (mostly in ice beyond the snowline and organics everywhere). These phases condensed from the proto-solar nebula gas, and/or were inherited from the interstellar medium. These accreted together within the next few million years to form the first planetesimals, some of which underwent differentiation very early on. The isotopic signatures of volatiles were also fixed very early and may even have preceded the first episodes of condensation and accretion. Throughout the accretion of the Earth, volatile elements were delivered by material from both the inner (dry, volatile-poor) and outer (volatile-rich) solar system. This delivery was concomitant with the metals and silicates that form the bulk of the planet. The contribution of bodies that formed in the far outer solar system, a region now populated by comets, is likely to have been very limited. In that sense, volatile elements were contributed continuously throughout Earth’s accretion from inner solar system reservoirs, which also provided the silicates and metal building blocks of the inner planets. Following accretion, it likely took a few hundred million years for the Earth’s atmosphere and oceans to stabilise. Luckily, we have been able to access a compositional record of the early atmosphere and oceans through the analysis of palaeo-atmospheric fluids trapped in Archean hydrothermal quartz. From these analyses, it appears that the surface reservoirs of the Earth evolved due to interactions between the early Sun and the top of the atmosphere, as well as the development of an early biosphere that progressively altered its chemistry.


2018 ◽  
pp. 117-196 ◽  
Author(s):  
Wally Broecker
Keyword(s):  

2017 ◽  
pp. 173-339 ◽  
Author(s):  
Martin Sharp ◽  
Martyn Tranter

2017 ◽  
pp. 1-171 ◽  
Author(s):  
Nicholas T. Arndt ◽  
Lluís Fontboté ◽  
Jeffrey W. Hedenquist ◽  
Stephen E. Kesler ◽  
John F.H. Thompson ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document