early atmosphere
Recently Published Documents


TOTAL DOCUMENTS

90
(FIVE YEARS 22)

H-INDEX

22
(FIVE YEARS 2)

2021 ◽  
Vol 2 (6) ◽  
pp. 230
Author(s):  
Noah Jäggi ◽  
Diana Gamborino ◽  
Dan J. Bower ◽  
Paolo A. Sossi ◽  
Aaron S. Wolf ◽  
...  

Abstract MESSENGER observations suggest a magma ocean formed on proto-Mercury, during which evaporation of metals and outgassing of C- and H-bearing volatiles produced an early atmosphere. Atmospheric escape subsequently occurred by plasma heating, photoevaporation, Jeans escape, and photoionization. To quantify atmospheric loss, we combine constraints on the lifetime of surficial melt, melt composition, and atmospheric composition. Consideration of two initial Mercury sizes and four magma ocean compositions determines the atmospheric speciation at a given surface temperature. A coupled interior–atmosphere model determines the cooling rate and therefore the lifetime of surficial melt. Combining the melt lifetime and escape flux calculations provides estimates for the total mass loss from early Mercury. Loss rates by Jeans escape are negligible. Plasma heating and photoionization are limited by homopause diffusion rates of ∼106 kg s−1. Loss by photoevaporation depends on the timing of Mercury formation and assumed heating efficiency and ranges from ∼106.6 to ∼109.6 kg s−1. The material for photoevaporation is sourced from below the homopause and is therefore energy limited rather than diffusion limited. The timescale for efficient interior–atmosphere chemical exchange is less than 10,000 yr. Therefore, escape processes only account for an equivalent loss of less than 2.3 km of crust (0.3% of Mercury’s mass). Accordingly, ≤0.02% of the total mass of H2O and Na is lost. Therefore, cumulative loss cannot significantly modify Mercury’s bulk mantle composition during the magma ocean stage. Mercury’s high core:mantle ratio and volatile-rich surface may instead reflect chemical variations in its building blocks resulting from its solar-proximal accretion environment.


Geology ◽  
2021 ◽  
Author(s):  
Malcolm S.W. Hodgskiss ◽  
Erik A. Sperling

The Great Oxidation Event (GOE), among Earth’s most transformative events, marked the sustained presence of oxygen above 10–5 times the present atmospheric level. Estimates of the onset of the GOE span 2501–2225 Ma and are based primarily on the loss of mass-independent fractionation of sulfur isotopes (MIF-S) in pyrite. To better constrain the timing of the GOE, we apply probabilistic techniques to estimate the confidence intervals of four proxies: MIF-S, redox-sensitive detrital minerals, "red beds," and I/(Ca + Mg). These GOE proxies are drawn from a highly fragmentary geologic record, and consequently, estimates of the 95% confidence intervals span tens to hundreds of millions of years—orders of magnitude larger than suggested by radiometric constraints on individual successions. Confidence interval results suggest that red beds and nonzero I/(Ca + Mg) values may have appeared earlier than 2480 Ma and 2460 Ma, respectively, whereas redox-sensitive detrital minerals and MIF-S may have disappeared after 2210 Ma and 2190 Ma, respectively. These data suggest a delay of potentially >300 m.y. between initial and permanent oxygenation of the atmosphere and a delay of tens of millions of years between onset of the Lomagundi-Jatuli carbon isotope excursion and permanent oxygenation of the atmosphere.


2021 ◽  
Author(s):  
Malcolm S.W. Hodgskiss ◽  
Erik A. Sperling

Details of the equations used, and compiled geological/geochemical data.<br>


2021 ◽  
Author(s):  
Malcolm S.W. Hodgskiss ◽  
Erik A. Sperling

Details of the equations used, and compiled geological/geochemical data.<br>


2021 ◽  
Vol 118 (33) ◽  
pp. e2107511118
Author(s):  
Jana Meixnerová ◽  
Joel D. Blum ◽  
Marcus W. Johnson ◽  
Eva E. Stüeken ◽  
Michael A. Kipp ◽  
...  

Earth’s early atmosphere witnessed multiple transient episodes of oxygenation before the Great Oxidation Event 2.4 billion years ago (Ga) [e.g., A. D. Anbar et al., Science 317, 1903–1906 (2007); M. C. Koehler, R. Buick, M. E. Barley, Precambrian Res. 320, 281–290 (2019)], but the triggers for these short-lived events are so far unknown. Here, we use mercury (Hg) abundance and stable isotope composition to investigate atmospheric evolution and its driving mechanisms across the well-studied “whiff” of O2 recorded in the ∼2.5-Ga Mt. McRae Shale from the Pilbara Craton in Western Australia [A. D. Anbar et al., Science 317, 1903–1906 (2007)]. Our data from the oxygenated interval show strong Hg enrichment paired with slightly negative ∆199Hg and near-zero ∆200Hg, suggestive of increased oxidative weathering. In contrast, slightly older beds, which were evidently deposited under an anoxic atmosphere in ferruginous waters [C. T. Reinhard, R. Raiswell, C. Scott, A. D. Anbar, T. W. Lyons, Science 326, 713–716 (2009)], show Hg enrichment coupled with positive ∆199Hg and slightly negative ∆200Hg values. This pattern is consistent with photochemical reactions associated with subaerial volcanism under intense UV radiation. Our results therefore suggest that the whiff of O2 was preceded by subaerial volcanism. The transient interval of O2 accumulation may thus have been triggered by diminished volcanic O2 sinks, followed by enhanced nutrient supply to the ocean from weathering of volcanic rocks causing increased biological productivity.


2021 ◽  
Vol 9 ◽  
Author(s):  
Eva E. Stüeken ◽  
Toby Boocock ◽  
Kristoffer Szilas ◽  
Sami Mikhail ◽  
Nicholas J. Gardiner

Earth’s sedimentary record has preserved evidence of life in rocks of low metamorphic grade back to about 3.2–3.5 billion years ago (Ga). These lines of evidence include information about specific biological metabolisms, permitting the reconstruction of global biogeochemical cycles in the early Archean. Prior to 3.5 Ga, the geological record is severely compromised by pervasive physical and chemical alteration, such as amphibolite-granulite facies metamorphic overprinting. Despite this alteration, evidence of biogenic organic matter is preserved in rare localities, including meta-turbidites from the 3.8 to 3.7 Ga Isua Supracrustal Belt, Western Greenland. But detailed insights into metabolic strategies and nutrient sources during the time of deposition of these Eoarchean meta-sedimentary rocks are lacking. Here we revisit the Isua meta-turbidites and provide new data for metal abundances as well as organic carbon and nitrogen isotope values. Our results reveal mixing between authigenic and detrital nitrogen phases with the authigenic phase likely fractionated by metamorphic degassing. Rayleigh fractionation models of these 3.7 Ga samples indicate pre-metamorphic δ15N values of between −1 and −10‰. The most plausible initial values are below −5‰, in agreement with a prior study. While the upper endmember of −1‰ could indicate biological N2 fixation at 3.7 Ga, the more plausible lighter values may point toward a distinct biogeochemical nitrogen cycle at that time, relative to the rest of Earth’s history. In light of recent experimental and phylogenetic data aligned with observations from the modern atmosphere, we tentatively conclude that lightning and/or high-energy photochemical reactions in the early atmosphere may have contributed isotopically light nitrogen to surface environment(s) preserved in the Isua turbidites. In this case, recycling of Eoarchean sediments may have led to the isotopically light composition of the Earth’s upper mantle dating back to at least 3.2 Ga.


Processes ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 82
Author(s):  
Helmut Thissen ◽  
Richard A. Evans ◽  
Vincent Ball

In recent years major advances in surface chemistry and surface functionalization have been performed through the development, most often inspired by living organisms, of versatile methodologies. Among those, the contact of substrates with aminomalononitrile (AMN) containing solutions at pH = 8.5 allows a conformal coating to be deposited on the surface of all known classes of material. Since AMN is a molecule probably formed in the early atmosphere of our planet and since HCN-based compounds have been detected on many comets and Titan (Saturn’s largest moon) it is likely that such molecules will open a large avenue in surface functionalization mostly for bio-applications. This mini review describes the state of the art of AMN-based coatings from their deposition kinetics, composition, chemical reactivity, hypothetical structure to their first applications as biomaterials. Finally, the AMN-based versatile coatings are compared to other kinds of versatile coating based on catecholamines and polyphenols.


Life ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 365
Author(s):  
Pyonghwa Kim ◽  
Manpreet Kaur ◽  
Hye-In Jang ◽  
Yong-Ick Kim

Cyanobacteria are photosynthetic organisms that are known to be responsible for oxygenating Earth’s early atmosphere. Having evolved to ensure optimal survival in the periodic light/dark cycle on this planet, their genetic codes are packed with various tools, including a sophisticated biological timekeeping system. Among the cyanobacteria is Synechococcus elongatus PCC 7942, the simplest clock-harboring organism with a powerful genetic tool that enabled the identification of its intricate timekeeping mechanism. The three central oscillator proteins—KaiA, KaiB, and KaiC—drive the 24 h cyclic gene expression rhythm of cyanobacteria, and the “ticking” of the oscillator can be reconstituted inside a test tube just by mixing the three recombinant proteins with ATP and Mg2+. Along with its biochemical resilience, the post-translational rhythm of the oscillation can be reset through sensing oxidized quinone, a metabolite that becomes abundant at the onset of darkness. In addition, the output components pick up the information from the central oscillator, tuning the physiological and behavioral patterns and enabling the organism to better cope with the cyclic environmental conditions. In this review, we highlight our understanding of the cyanobacterial circadian clock and discuss how it functions as a molecular chronometer that readies the host for predictable changes in its surroundings.


2020 ◽  
Vol 6 (48) ◽  
pp. eabd1387
Author(s):  
Paolo A. Sossi ◽  
Antony D. Burnham ◽  
James Badro ◽  
Antonio Lanzirotti ◽  
Matt Newville ◽  
...  

Exchange between a magma ocean and vapor produced Earth’s earliest atmosphere. Its speciation depends on the oxygen fugacity (fO2) set by the Fe3+/Fe2+ ratio of the magma ocean at its surface. Here, we establish the relationship between fO2 and Fe3+/Fe2+ in quenched liquids of silicate Earth-like composition at 2173 K and 1 bar. Mantle-derived rocks have Fe3+/(Fe3++Fe2+) = 0.037 ± 0.005, at which the magma ocean defines an fO2 0.5 log units above the iron-wüstite buffer. At this fO2, the solubilities of H-C-N-O species in the magma ocean produce a CO-rich atmosphere. Cooling and condensation of H2O would have led to a prebiotic terrestrial atmosphere composed of CO2-N2, in proportions and at pressures akin to those observed on Venus. Present-day differences between Earth’s atmosphere and those of her planetary neighbors result from Earth’s heliocentric location and mass, which allowed geologically long-lived oceans, in-turn facilitating CO2 drawdown and, eventually, the development of life.


Science ◽  
2020 ◽  
Vol 370 (6515) ◽  
pp. eabb8092
Author(s):  
Xin Gu ◽  
Peter J. Heaney ◽  
Fabio D. A. Aarão Reis ◽  
Susan L. Brantley

Pyrite is a ubiquitous iron sulfide mineral that is oxidized by trace oxygen. The mineral has been largely absent from global sediments since the rise in oxygen concentration in Earth’s early atmosphere. We analyzed weathering in shale, the most common rock exposed at Earth’s surface, with chemical and microscopic analysis. By looking across scales from 10−9 to 102 meters, we determined the factors that control pyrite oxidation. Under the atmosphere today, pyrite oxidation is rate-limited by diffusion of oxygen to the grain surface and regulated by large-scale erosion and clast-scale fracturing. We determined that neither iron- nor sulfur-oxidizing microorganisms control global pyrite weathering fluxes despite their ability to catalyze the reaction. This multiscale picture emphasizes that fracturing and erosion are as important as atmospheric oxygen in limiting pyrite reactivity over Earth’s history.


Sign in / Sign up

Export Citation Format

Share Document