density estimators
Recently Published Documents


TOTAL DOCUMENTS

415
(FIVE YEARS 60)

H-INDEX

34
(FIVE YEARS 5)

2021 ◽  
pp. 1-35
Author(s):  
Matias D. Cattaneo ◽  
Michael Jansson

This paper highlights a tension between semiparametric efficiency and bootstrap consistency in the context of a canonical semiparametric estimation problem, namely the problem of estimating the average density. It is shown that although simple plug-in estimators suffer from bias problems preventing them from achieving semiparametric efficiency under minimal smoothness conditions, the nonparametric bootstrap automatically corrects for this bias and that, as a result, these seemingly inferior estimators achieve bootstrap consistency under minimal smoothness conditions. In contrast, several “debiased” estimators that achieve semiparametric efficiency under minimal smoothness conditions do not achieve bootstrap consistency under those same conditions.


Author(s):  
Rachel Keil ◽  
Mrinal Kumar ◽  
Anil V. Rao

Abstract A warm start method is developed for efficiently solving complex chance constrained optimal control problems. The warm start method addresses the computational challenges of solving chance constrained optimal control problems using biased kernel density estimators and Legendre-Gauss-Radau collocation with an $hp$ adaptive mesh refinement method. To address the computational challenges, the warm start method improves both the starting point for the chance constrained optimal control problem, as well as the efficiency of cycling through mesh refinement iterations. The improvement is accomplished by tuning a parameter of the kernel density estimator, as well as implementing a kernel switch as part of the solution process. Additionally, the number of samples for the biased kernel density estimator is set to incrementally increase through a series of mesh refinement iterations. Thus, the warm start method is a combination of tuning a parameter, a kernel switch, and an incremental increase in sample size. This warm start method is successfully applied to solve two challenging chance constrained optimal control problems in a computationally efficient manner using biased kernel density estimators and Legendre-Gauss-Radau collocation.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11742
Author(s):  
Matthew Crane ◽  
Inês Silva ◽  
Benjamin M. Marshall ◽  
Colin T. Strine

Reptiles are the most species-rich terrestrial vertebrate group with a broad diversity of life history traits. Biotelemetry is an essential methodology for studying reptiles as it compensates for several limitations when studying their natural history. We evaluated trends in terrestrial reptile spatial ecology studies focusing upon quantifying home ranges for the past twenty years. We assessed 290 English-language reptile home range studies published from 2000–2019 via a structured literature review investigating publications’ study location, taxonomic group, methodology, reporting, and analytical techniques. Substantial biases remain in both location and taxonomic groups in the literature, with nearly half of all studies (45%) originating from the USA. Snakes were most often studied, and crocodiles were least often studied, while testudines tended to have the greatest within study sample sizes. More than half of all studies lacked critical methodological details, limiting the number of studies for inclusion in future meta-analyses (55% of studies lacked information on individual tracking durations, and 51% lacked sufficient information on the number of times researchers recorded positions). Studies continue to rely on outdated methods to quantify space-use (including Minimum Convex Polygons and Kernel Density Estimators), often failing to report subtleties regarding decisions that have substantial impact on home range area estimates. Moving forward researchers can select a suite of appropriate analytical techniques tailored to their research question (dynamic Brownian Bridge Movement Models for within sample interpolation, and autocorrelated Kernel Density Estimators for beyond sample extrapolation). Only 1.4% of all evaluated studies linked to available and usable telemetry data, further hindering scientific consensus. We ultimately implore herpetologists to adopt transparent reporting practices and make liberal use of open data platforms to maximize progress in the field of reptile spatial ecology.


Sign in / Sign up

Export Citation Format

Share Document