Charles Bonnet Syndrome After Occipital Cortical Resection for Cortical Dysplasia May Be Related to Denervation Supersensitivity—Reply

2005 ◽  
Vol 62 (9) ◽  
pp. 1479
Author(s):  
Eun Jung Choi ◽  
Sang Ahm Lee
2001 ◽  
Vol 42 (12) ◽  
pp. 839 ◽  
Author(s):  
Kenjiro Gondo ◽  
Ryutaro Kira ◽  
Yoichi Tokunaga ◽  
Chie Harashima ◽  
Shozo Tobimatsu ◽  
...  

2006 ◽  
Vol preprint (2008) ◽  
pp. 1
Author(s):  
Ali Saad ◽  
Mayur Jayarao ◽  
Lawrence Chin ◽  
Ivana Delalle

2018 ◽  
Vol 30 (2) ◽  
pp. 122-128 ◽  
Author(s):  
Darija Jurisic ◽  
◽  
Irena Sesar ◽  
Ivan Cavar ◽  
Antonio Sesar ◽  
...  

2019 ◽  
Vol 24 (3) ◽  
pp. 284-292
Author(s):  
Eisha A. Christian ◽  
Elysa Widjaja ◽  
Ayako Ochi ◽  
Hiroshi Otsubo ◽  
Stephanie Holowka ◽  
...  

OBJECTIVESmall lesions at the depth of the sulcus, such as with bottom-of-sulcus focal cortical dysplasia, are not visible from the surface of the brain and can therefore be technically challenging to resect. In this technical note, the authors describe their method of using depth electrodes as landmarks for the subsequent resection of these exacting lesions.METHODSA retrospective review was performed on pediatric patients who had undergone invasive electroencephalography with depth electrodes that were subsequently used as guides for resection in the period between July 2015 and June 2017.RESULTSTen patients (3–15 years old) met the criteria for this study. At the same time as invasive subdural grid and/or strip insertion, between 2 and 4 depth electrodes were placed using a hand-held frameless neuronavigation technique. Of the total 28 depth electrodes inserted, all were found within the targeted locations on postoperative imaging. There was 1 patient in whom an asymptomatic subarachnoid hemorrhage was demonstrated on postprocedural imaging. Depth electrodes aided in target identification in all 10 cases.CONCLUSIONSDepth electrodes placed at the time of invasive intracranial electrode implantation can be used to help localize, target, and resect primary zones of epileptogenesis caused by bottom-of-sulcus lesions.


Author(s):  
Lütfü Hanoglu ◽  
Sultan Yildiz ◽  
Tansel Cakir ◽  
Taha Hanoglu ◽  
Burak Yulug

Background and Objective: Charles Bonnet Syndrome (CBS) has been defined as complex visual hallucinations (CVH) due to visual loss. The underlying mechanism of CBS is not clear and the underlying pathophysiology of the visual hallucinations in CBS patients and pure visually impaired patients is still not clear. </P><P> Methods: In our study, we have scanned three patients with eye disease and CBS (VH+) and three patients with eye disease without CBS (VH-) using FDG-PET. Results: Our results showed underactivity in the pons and overactivity in primary right left visual cortex and inferior parietal cortex in VH- patients and underactivity in left Broca, left inf frontal primary visual cortex and anterior and posterior cingulate cortex in VH+ patients relative to the normative 18FFDG PET data that was taken from the database consisting of 50 age-matched healthy adults without neuropsychiatric disorders. Conclusion: From this distributed pattern of activity changes, we conclude that the generation of visual hallucination in CBS is associated with bottom-up and top-down mechanism rather than the generally accepted visual deafferentation-related hyperexcitability theory.


Sign in / Sign up

Export Citation Format

Share Document