scholarly journals Upper‐ocean mixing due to surface gravity waves

2015 ◽  
Vol 120 (12) ◽  
pp. 8210-8228 ◽  
Author(s):  
Lichuan Wu ◽  
Anna Rutgersson ◽  
Erik Sahlée
2012 ◽  
Vol 42 (5) ◽  
pp. 725-747 ◽  
Author(s):  
Hidenori Aiki ◽  
Richard J. Greatbatch

Abstract The residual effect of surface gravity waves on mean flows in the upper ocean is investigated using thickness-weighted mean (TWM) theory applied in a vertically Lagrangian and horizontally Eulerian coordinate system. Depth-dependent equations for the conservation of volume, momentum, and energy are derived. These equations allow for (i) finite amplitude fluid motions, (ii) the horizontal divergence of currents, and (iii) a concise treatment of both kinematic and viscous boundary conditions at the sea surface. Under the assumptions of steady and monochromatic waves and a uniform turbulent viscosity, the TWM momentum equations are used to illustrate the pressure- and viscosity-induced momentum fluxes through the surface, which are implicit in previous studies of the wave-induced modification of the classical Ekman spiral problem. The TWM approach clarifies, in particular, the surface momentum flux associated with the so-called virtual wave stress of Longuet-Higgins. Overall, the TWM framework can be regarded as an alternative to the three-dimensional Lagrangian mean framework of Pierson. Moreover, the TWM framework can be used to include the residual effect of surface waves in large-scale circulation models. In specific models that carry the TWM velocity appropriate for advecting tracers as their velocity variable, the turbulent viscosity term should be modified so that the viscosity acts only on the Eulerian mean velocity.


2002 ◽  
Author(s):  
Michael C. Gregg ◽  
Jack B. Miller

1997 ◽  
Author(s):  
Michael Gregg ◽  
Jack Miller

2008 ◽  
Vol 32 (9) ◽  
pp. 1696-1710 ◽  
Author(s):  
Eduardo Godoy ◽  
Axel Osses ◽  
Jaime H. Ortega ◽  
Alvaro Valencia

Sign in / Sign up

Export Citation Format

Share Document