scholarly journals On the analogy between rigid plate motion and mean momentum transfer in surface gravity waves

AIP Advances ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 045114
Author(s):  
Jan Erik H. Weber ◽  
Kai H. Christensen
2008 ◽  
Vol 32 (9) ◽  
pp. 1696-1710 ◽  
Author(s):  
Eduardo Godoy ◽  
Axel Osses ◽  
Jaime H. Ortega ◽  
Alvaro Valencia

1973 ◽  
Vol 29 (3) ◽  
pp. 94-105 ◽  
Author(s):  
Ken Sasaki ◽  
Takashi Murakami

Wave Motion ◽  
2020 ◽  
pp. 102702
Author(s):  
M.A. Manna ◽  
S. Noubissie ◽  
J. Touboul ◽  
B. Simon ◽  
R.A. Kraenkel

Author(s):  
D. Hasselmann ◽  
J. Bösenberg ◽  
M. Dunckel ◽  
K. Richter ◽  
M. Grünewald ◽  
...  

2017 ◽  
Vol 829 ◽  
pp. 280-303 ◽  
Author(s):  
S. Haney ◽  
W. R. Young

Groups of surface gravity waves induce horizontally varying Stokes drift that drives convergence of water ahead of the group and divergence behind. The mass flux divergence associated with spatially variable Stokes drift pumps water downwards in front of the group and upwards in the rear. This ‘Stokes pumping’ creates a deep Eulerian return flow that sets the isopycnals below the wave group in motion and generates a trailing wake of internal gravity waves. We compute the energy flux from surface to internal waves by finding solutions of the wave-averaged Boussinesq equations in two and three dimensions forced by Stokes pumping at the surface. The two-dimensional (2-D) case is distinct from the 3-D case in that the stratification must be very strong, or the surface waves very slow for any internal wave (IW) radiation at all. On the other hand, in three dimensions, IW radiation always occurs, but with a larger energy flux as the stratification and surface wave (SW) amplitude increase or as the SW period is shorter. Specifically, the energy flux from SWs to IWs varies as the fourth power of the SW amplitude and of the buoyancy frequency, and is inversely proportional to the fifth power of the SW period. Using parameters typical of short period swell (e.g. 8 s SW period with 1 m amplitude) we find that the energy flux is small compared to both the total energy in a typical SW group and compared to the total IW energy. Therefore this coupling between SWs and IWs is not a significant sink of energy for the SWs nor a source for IWs. In an extreme case (e.g. 4 m amplitude 20 s period SWs) this coupling is a significant source of energy for IWs with frequency close to the buoyancy frequency.


Sign in / Sign up

Export Citation Format

Share Document