Surface Gravity
Recently Published Documents


TOTAL DOCUMENTS

756
(FIVE YEARS 207)

H-INDEX

46
(FIVE YEARS 11)

2022 ◽  
Vol 933 ◽  
Author(s):  
Zhou Zhang ◽  
Yulin Pan

In this paper, we numerically study the wave turbulence of surface gravity waves in the framework of Euler equations of the free surface. The purpose is to understand the variation of the scaling of the spectra with wavenumber $k$ and energy flux $P$ at different nonlinearity levels under different forcing/free-decay conditions. For all conditions (free decay and narrow-band and broad-band forcing) that we consider, we find that the spectral forms approach the wave turbulence theory (WTT) solution $S_\eta \sim k^{-5/2}$ and $S_\eta \sim P^{1/3}$ at high nonlinearity levels. With a decrease of nonlinearity level, the spectra for all cases become steeper, with the narrow-band forcing case exhibiting the most rapid deviation from WTT. We investigate bound waves and the finite-size effect as possible mechanisms causing the spectral variations. Through a tri-coherence analysis, we find that the finite-size effect is present in all cases, which is responsible for the overall steepening of the spectra and the reduced capacity of energy flux at lower nonlinearity levels. The fraction of bound waves in the domain generally decreases with the decrease of nonlinearity level, except for the narrow-band case, which exhibits a transition at a critical nonlinearity level below which a rapid increase is observed. This increase serves as the main reason for the fastest deviation from WTT with the decrease of nonlinearity in the narrow-band forcing case.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Antonio G. Camacho ◽  
Peter Vajda ◽  
Craig A. Miller ◽  
José Fernández

AbstractGlobally there is abundant terrestrial surface gravity data used to study the time variation of gravity related to subsurface mass and density changes in different geological, geodynamical and geotechnical environments. We present here a tool for analysing existing and newly acquired, 4D gravity data, which creates new findings from its reuse. Our method calculates in an almost automatic way the possible sources of density change responsible for the observed gravity variations. The specifics of the new methodology are: use of a low number of observation points, relatively small source structures, low signal/noise ratio in the data, and a free 3D source geometry without initial hypothesis. The process is based on the non-linear adjustment of structures defined by aggregation of small cells corresponding to a 3D section of the sub-floor volume. This methodology is implemented in a software tool, named GROWTH-dg, which can be freely downloaded for immediate use, together with a user manual and application examples.


2021 ◽  
Author(s):  
◽  
Gabriel Abreu

<p>General Relativity, while ultimately based on the Einstein equations, also allows one to quantitatively study some aspects of the theory without explicitly solving the Einstein equations. These geometrical notions of the theory provide an insight to the nature of more general spacetimes. In this thesis, the Raychaudhuri equation, the choice of the coordinate system, the notions of surface gravity and of entropy, and restrictions on negative energy densities on the form of the Quantum Interest Conjecture, will be discussed. First, using the Kodama vector, a geometrically preferred coordinate system is built. With this coordinate system the usual quantities, such as the Riemann and Einstein tensors, are calculated. Then, the notion of surface gravity is generalized in two different ways. The first generalization is developed considering radial ingoing and outgoing null geodesics, in situations of spherical symmetry. The other generalized surface gravity is a three-vector obtained from the spatial components of the redshifted four acceleration of a suitable set of fiducial observers. This vectorial surface gravity is then used to place a bound on the entropy of both static and rotating horizonless objects. This bound is obtain mostly by classical calculations, with a minimum use of quantum field theory in curved spacetime. Additionally, several improved versions of the Raychaudhuri equation are developed and used in different scenarios, including a two congruence generalization of the equation. Ultimately semiclassical quantum general relativity is studied in the specific form of the Quantum Inequalities, and the Quantum Interest Conjecture. A variational proof of a version of the Quantum Interest Conjecture in (3 + 1)–dimensional Minkowski space is provided.</p>


2021 ◽  
Author(s):  
◽  
Gabriel Abreu

<p>General Relativity, while ultimately based on the Einstein equations, also allows one to quantitatively study some aspects of the theory without explicitly solving the Einstein equations. These geometrical notions of the theory provide an insight to the nature of more general spacetimes. In this thesis, the Raychaudhuri equation, the choice of the coordinate system, the notions of surface gravity and of entropy, and restrictions on negative energy densities on the form of the Quantum Interest Conjecture, will be discussed. First, using the Kodama vector, a geometrically preferred coordinate system is built. With this coordinate system the usual quantities, such as the Riemann and Einstein tensors, are calculated. Then, the notion of surface gravity is generalized in two different ways. The first generalization is developed considering radial ingoing and outgoing null geodesics, in situations of spherical symmetry. The other generalized surface gravity is a three-vector obtained from the spatial components of the redshifted four acceleration of a suitable set of fiducial observers. This vectorial surface gravity is then used to place a bound on the entropy of both static and rotating horizonless objects. This bound is obtain mostly by classical calculations, with a minimum use of quantum field theory in curved spacetime. Additionally, several improved versions of the Raychaudhuri equation are developed and used in different scenarios, including a two congruence generalization of the equation. Ultimately semiclassical quantum general relativity is studied in the specific form of the Quantum Inequalities, and the Quantum Interest Conjecture. A variational proof of a version of the Quantum Interest Conjecture in (3 + 1)–dimensional Minkowski space is provided.</p>


2021 ◽  
Vol 6 (11) ◽  
Author(s):  
Kamlesh Kumar ◽  
Vivek Kumar ◽  
P. Deepu ◽  
Pritesh Ramya

2021 ◽  
Vol 2056 (1) ◽  
pp. 012033
Author(s):  
A V Poplevin ◽  
S V Filatov ◽  
A A Levchenko

Abstract We studied experimentally the generation of vortex flow by non-collinear gravity waves with a frequency of 2.34 Hz. The vortices formed on the water surface have the form of stripes, the width L=π/(2k sin θ) of which is determined by the wave vector k and the angle between them, and the length is determined by the size of the system. We demonstrate that the measured dependence Ω(t) can be described within the recently developed model that considers the Eulerian contribution to the generated vortex flow and the effect of surface contamination.


Sign in / Sign up

Export Citation Format

Share Document